Orthotropic yield criterion for hexagonal closed packed metals

International Journal of Plasticity - Tập 22 Số 7 - Trang 1171-1194 - 2006
Oana Cazacu1, B. Plunkett1, F. Barlat2
1Department of Mechanical and Aerospace Engineering, University of Florida’s Graduate Engineering and Research Center, Shalimar, FL 32579-1163, USA
2Materials Science Division, Alcoa Inc., Alcoa Technical Center, 100 Technical Drive, Alcoa Center, PA 15069-0001, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

1999

Agnew, 2005, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, Int. J. Plasticity, 21, 1161, 10.1016/j.ijplas.2004.05.018

Barlat, 1991, A six-component yield function for anisotropic materials, Int. J. Plasticity, 7, 693, 10.1016/0749-6419(91)90052-Z

Barlat, 2003, Plane stress yield function for aluminum alloy sheet – Part I: Theory, Int. J. Plasticity, 19, 1297, 10.1016/S0749-6419(02)00019-0

Barlat, 2004, Yield Surface Plasticity and Anisotropy, 145

Barlat, 2005, Linear transformation-based anisotropic yield functions, Int. J. Plasticity, 21, 1009, 10.1016/j.ijplas.2004.06.004

Bishop, 1951, A theoretical deviation of the plastic properties of a polycrystalline face-centered metal, Phil. Mag. Ser., 42, 1298, 10.1080/14786444108561385

Bron, 2004, A yield function for anisotropic materials application to aluminum alloys, Int. J. Plasticity, 20, 937, 10.1016/j.ijplas.2003.06.001

Cazacu, 2001, Generalization of Drucker’s yield criterion to orthotropy, Math. Mech. Solids, 6, 613, 10.1177/108128650100600603

Cazacu, 2003, Application of representation theory to describe yielding of anisotropic aluminum alloys, Int. J. Eng. Sci., 41, 1367, 10.1016/S0020-7225(03)00037-5

Cazacu, 2004, A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, Int. J. Plasticity, 20, 2027, 10.1016/j.ijplas.2003.11.021

Chin, 1969, Taylor analysis for {111} 〈112〉 twinning and {111} 〈110〉 slip under conditions of axisymmetric flow, Trans. TMS-AIME, 245, 383

Hill, 1948, A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. London, A193, 281, 10.1098/rspa.1948.0045

Hosford, 1966, Texture strengthening, Met. Eng. Quarterly, 6, 13

Hosford, 1973, Twining and directional slip as a cause for strength differential effect, Met. Trans., 4, 1424, 10.1007/BF02644545

Hosford, 1993

Kaiser, 2003, Anisotropic properties of magnesium sheet AZ31, Mat. Sci. Forum, 419–422, 315, 10.4028/www.scientific.net/MSF.419-422.315

Karafillis, 1993, A general anisotropic yield criterion using bounds and a transformation weighting tensor, J. Mech. Phys. Solids, 41, 1859, 10.1016/0022-5096(93)90073-O

Kelley, 1968, Deformation characteristics of textured magnesium, Trans. TMS-AIME, 242, 654

Kuwabara, T., Katami, C., Kikuchi, M., Shindo, T., Ohwue, T., 2001. Cup drawing of pure titanium sheet-finite element analysis and experimental validation. In: Proceedings of the Seventh International Conference on Numerical Methods in Industrial Forming Processes, Toyohashi, Japan, 18–20 June, p. 781.

Lebensohn, 1993, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of poly crystals: application to zirconium alloys, Acta Metall. et Mater., 41, 2611, 10.1016/0956-7151(93)90130-K

Lee, 1966, An experimental determination of the yield locus for titanium and titanium-alloy sheet, TMS-AIME, 236, 1077

Liu, 1982, On representations of anisotropic invariants, Int. J. Eng. Sci., 20, 1099, 10.1016/0020-7225(82)90092-1

Malvern, 1969

Rockafellar, 1972

Sobotka, 1969, Theorie des plastischen Fliessens von anisotropen Körpern, Zeit. Angew. Math. Mech., 49, 25, 10.1002/zamm.19690490105

Staroselsky, 2003, A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B, Int. J. Plasticity, 19, 1843, 10.1016/S0749-6419(03)00039-1

Takuda, 1999, Finite-element analysis of the formability of a magnesium-based alloy AZ31 sheet, J. Mater. Process. Techn., 89–90, 135, 10.1016/S0924-0136(99)00039-4

Tomé, 1991, A model for texture development dominated by deformation twinning: application to zirconium alloys, Acta Mater., 39, 2667, 10.1016/0956-7151(91)90083-D

Tomé, 2001, Mechanical response of zirconium-I. Derivation of a polycrystal constitutive law and finite element analysis, Acta Mater., 49, 3085, 10.1016/S1359-6454(01)00190-2

Tomé, 2004, Self consistent homogenization methods for texture and anisotropy, 473

Van-Houtte, 1978, Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning, Acta Metall., 26, 591, 10.1016/0001-6160(78)90111-6

Wang, 1970, A new representation theorem for isotropic functions, Part I and II, Arch. Rat. Mech. An., 36, 166, 10.1007/BF00272241