Orthograph related to mutual strong Birkhoff–James orthogonality in $$C^*$$-algebras

Banach Journal of Mathematical Analysis - Tập 14 Số 4 - Trang 1751-1772 - 2020
Ljiljana Arambašić1, Alexander Guterman2,3,4, Bojan Kuzma5,3,6, Rajna Rajić7, Svetlana Zhilina2,3,4
1Department of Mathematics, Faculty of Science, University of Zagreb, Zagreb, Croatia
2Department of Mathematics and Mechanics, Lomonosov Moscow State University, Moscow, Russia
3Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
4Moscow Institute of Physics and Technology, Dolgoprudny, Russia
5IMFM, Ljubljana, Slovenia
6University of Primorska, Koper, Slovenia
7Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, Croatia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arambašić, Lj., Rajić, R.: The Birkhoff–James orthogonality in Hilbert $$C^*$$-modules. Linear Algebra Appl. 437(7), 1913–1929 (2012)

Arambašić, Lj., Rajić, R.: A strong version of the Birkhoff–James orthogonality in Hilbert $$C^*$$-modules. Ann. Funct. Anal. 5(1), 109–120 (2014)

Arambašić, Lj., Rajić, R.: On three concepts of orthogonality in Hilbert $$C^*$$-modules. Linear Multilinear A. 63(7), 1485–1500 (2015)

Arambašić, Lj., Rajić, R.: Operators preserving the strong Birkhoff–James orthogonality on $$\mathbb{B}(H)$$. Linear Algebra Appl. 471, 394–404 (2015)

Arambašić, Lj., Rajić, R.: On symmetry of the (strong) Birkhoff–James orthogonality in Hilbert $$C^*$$-modules. Ann. Funct. Anal. 7(1), 17–23 (2016)

Bakhadly, B.R., Guterman, A.E., Markova, O.V.: Graphs defined by orthogonality. J. Math. Sci. 207, 698–717 (2015)

Bhatia, R., Šemrl, P.: Orthogonality of matrices and some distance problems. Linear Algebra Appl. 287(1–3), 77–85 (1999)

Bhattacharyya, T., Grover, P.: Characterization of Birkhoff–James orthogonality. J. Math. Anal. Appl. 407(2), 350–358 (2013)

Birkhoff, G.: Orthogonality in linear metric spaces. Duke Math. J. 1, 169–172 (1935)

Blackadar, B.: Operator Algebras. Theory of $$C^*$$-algebras and von Neumann Algebras. Encyclopaedia of Mathematical Sciences, vol. 122. Springer, Berlin (2006)

Blanco, A., Turnšek, A.: On maps that preserve orthogonality in normed spaces. Proc. R. Soc. Edinb. Sect. A 136, 709–716 (2006)

Chmieliński, J., Wójcik, P.: Approximate symmetry of Birkhoff orthogonality. J. Math. Anal. Appl. 461(1), 625–640 (2018)

Guterman, A.E., Markova, O.V.: Orthogonality graphs of matrices over skew fields. Zap. Nauchn. Sem. POMI, 463, 81-93 (2017)

English translation: J. Math. Sci. (N. Y.) 232(6), 797-804 (2018)

Halmos, P.R.: Limsups of lats. Indiana Univ. Math. J. 29, 293–311 (1980)

James, R.C.: Orthogonality in normed linear spaces. Duke Math. J. 12, 291–302 (1945)

James, R.C.: Inner products in normed linear spaces. Bull. Am. Math. Soc. 53, 559–566 (1947)

James, R.C.: Orthogonality and linear functionals in normed linear spaces. Trans. Am. Math. Soc. 61, 265–292 (1947)

Kečkić, D.: Orthogonality and smooth points in $$C(K)$$ and $$C_b(\Omega )$$. Eurasian Math. J. 3(4), 44–52 (2012)

Komuro, N., Saito, K.S., Tanaka, R.: On symmetry of Birkhoff orthogonality in the positive cones of $$C^*$$-algebras with applications. J. Math. Anal. Appl. 474(2), 1488–1497 (2019)

Lang, S.: Real and Functional Analysis. Graduate Texts in Mathematics, 3rd edn. Springer, New York (1993)

Magajna, B.: On the distance to finite-dimensional subspaces in operator algebras. J. Lond. Math. Soc. 47(2), 516–532 (1993)

Manuilov, V.M., Troïtsky, E.V.: Hilbert $$C^*$$-Modules. Translations of Mathematical Monographs, vol. 22. American Mathematical Society, Providence (2005)

Moslehian, M.S., Zamani, A.: Characterizations of operator Birkhoff–James orthogonality. Can. Math. Bull. 60(4), 816–829 (2017)

Paul, K., Sain, D., Mal, A., Mandal, K.: Orthogonality of bounded linear operators on complex Banach spaces. Adv. Oper. Theory 3(3), 699–709 (2018)

Stampfli, J.G.: The norm of a derivation. Pac. J. Math. 33, 737–747 (1970)

Turnšek, A.: On operators preserving James’ orthogonality. Linear Algebra Appl. 407, 189–195 (2005)

Zamani, A., Wójcik, P.: Numerical radius orthogonality in $$C^*$$-algebras. Ann. Funct. Anal. (2020). https://doi.org/10.1007/s43034-020-00071-z