Orthogonal polynomials with complex-valued weight function, I
Tóm tắt
Từ khóa
Tài liệu tham khảo
H. Hamburger (1920/21):Über eine Erweiterung des Stieltjesschen Momentenproblems, Teil I, II und III. Math. Ann.,81:235–319, Math. Ann.,82:120–164, 168–187.
G. Szegö (1967): Orthogonal Polynomials, 3rd ed. Providence, RI: American Mathematical Society.
G. Baxter (1971):A convergence equivalence related to polynomials orthogonal on the unit circle, Trans. Amer. Math. Soc.,79:471–487.
J. Nuttall (1972): Orthogonal Polynomials for Complex Weight Functions and the Convergence of Related Padé Approximants. (Private communication.)
H. Stahl (1974): Orthogonal Polynomials of Complex-valued Measures and the convergence of Padé Approximants, Coll. Math. Soc. Janos Bolyai, 19. Budapest: Fourier Analysis and Approximation Theory.
H. Stahl (1985):Extremal domains associated with an analytic function I, II, Complex Variables4:311–324, 325–338.
T. Bagby (1967):The modulus of a plane condenser, J. Math. Mech.17:315–329.
H. Stahl (1985):Structure of extremal domains associated with an analytic function. Complex Variables4:339–354.
R. Courant (1950): Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces. New York: Springer-Verlag.
J. Nuttall (1977):The convergence of Padé approximants to functions with branch points, In: Padé and Rational Approximation (E. B. Saff and R. S. Varga, eds.). New York: Academic Press.
J. Nuttall, S. R. Singh (1977):Orthogonal polynomials and Padé approximants associated with a system of Arcs. J. Approx. Theory,21:1–42.
A. Magnus (to appear):Toeplitz matrix techniques and convergence of complex weight Padé approximants. New York: Springer-Verlag.
A. A. Gonchar, G. Lopez (1978):On Markov's theorem for multipoint Padé approximants, Mat. Sb., 105(147),4:512–527. English translation in Math. U.S.S.R. Sb.,34 (1978).