Orlicz–Morrey Spaces and Fractional Operators
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams, D., Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J. 53, 1629–1663 (2004)
Garcia-Cuerva, J., Rubio de Francia, J.L.: Weighted norm inequalities and related topics. In: Mathematics Student, vol. 116. North-Holland, Amsterdam (1985)
Gilbarg, D., Trudinger, S.N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)
Kerman, R., Sawyer, E.: The trace inequality and eigenvalue estimates for Schrödinger operators. Ann. Inst. Fourier (Grenoble) 36, 207–228 (1986)
Nakai, E.: Generalized fractional integrals on Orlicz–Morrey spaces. In: Banach and Function Spaces, pp. 323–333. Yokohama Publishers, Yokohama (2004)
Nakai, E.: Orlicz–Morrey spaces and the Hardy–Littlewood maximal function. Stud. Math. 188, 193–221 (2008)
Olsen, P.: Fractional integration, Morrey spaces and Schrödinger equation. Commun. Partial Differ. Equ. 20, 2005–2055 (1995)
Pérez, C.: Two weighted inequalities for potential and fractional type maximal operators. Indiana Univ. Math. J. 43, 663–683 (1994)
Pérez, C.: Sharp L p -weighted Sobolev inequalities. Ann. Inst. Fourier (Grenoble) 45, 809–824 (1995)
Rao, M.M., Ren, D.Z.: Theory of Orlicz Spaces. Marcel Dekker, New York (1991)
Sawano, Y., Sobukawa, T., Tanaka, H.: Limiting case of the boundedness of fractional integral operators on nonhomogeneous space. J. Inequal. Appl. 16 pp. (2006). doi: 10.1155/JIA/2006/92470
Sawano, Y., Sugano, S., Tanaka, H.: A note on generalized fractional integral operators on generalized Morrey spaces. Boundary Value Problems 2009, 18 pp. (2009). doi: 10.1155/2009/835865
Sawano, Y., Sugano, S., Tanaka, H.: Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces. Trans. Am. Math. Soc. (2011, to appear)
Stein, M.E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)