Origins of the Earth’s Diffuse Auroral Precipitation

Space Science Reviews - Tập 200 - Trang 205-259 - 2016
Binbin Ni1, Richard M. Thorne2, Xiaojia Zhang2,3, Jacob Bortnik2, Zuyin Pu4, Lun Xie4, Ze-jun Hu5, Desheng Han5, Run Shi6, Chen Zhou1, Xudong Gu1
1Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan, China
2Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, USA
3Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, Los Angeles, USA
4Institute of Space Physics and Applied Technology, Peking University, Beijing, China
5SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
6Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, Canada

Tóm tắt

The Earth’s diffuse auroral precipitation provides the major source of energy input into the nightside upper atmosphere and acts as an essential linkage of the magnetosphere-ionosphere coupling. Resonant wave-particle interactions play a dominant role in the scattering of injected plasma sheet electrons, leading to the diffuse auroral precipitation. We review the recent advances in understanding the origin of the diffuse aurora and in quantifying the exact roles of various magnetospheric waves in producing the global distribution of diffuse auroral precipitation and its variability with the geomagnetic activity. Combined scattering by upper-and lower-band chorus accounts for the most intense inner magnetospheric electron diffuse auroral precipitation on the nightside. Dayside chorus can be responsible for the weaker dayside electron diffuse auroral precipitation. Pulsating auroras, the dynamic auroral structures embedded in the diffuse aurora, can be mainly caused by modulation of the excitation of lower band chorus due to macroscopic density variations in the magnetosphere. Electrostatic electron cyclotron harmonic waves are an important or even dominant cause for the nightside electron diffuse auroral precipitation beyond ${\sim}8R_{e}$ and can also contribute to the occurrence of the pulsating aurora at high $L$ -shells. Scattering by electromagnetic ion cyclotron waves could quite possibly be the leading candidate responsible for the ion precipitation (especially the reversed-type events of the energy-latitude dispersion) in the regions of the central plasma sheet and ring current. We conclude the review with a summary of current understanding, outstanding questions, and a number of suggestions for future research.

Tài liệu tham khảo

S.-I. Akasofu, Auroral morphology: a historical account and major auroral features during auroral substorms, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, ed. by A. Keiling, E. Donovan, F. Bagenal, T. Karlsson. AGU Monograph (2012) J.M. Albert, Nonlinear interaction of outer zone electrons with VLF waves. Geophys. Res. Lett. 29(8), 1275 (2002). doi:10.1029/2001GL013941 J.M. Albert, Simple approximations of quasi-linear diffusion coefficients. J. Geophys. Res. 112, A12202 (2007). doi:10.1029/2007JA012551 R.R. Anderson, K. Maeda, VLF emissions associated with enhanced magnetospheric electrons. J. Geophys. Res. 82(1), 135–146 (1977) B.J. Anderson, R.E. Erlandson, L.J. Zanetti, A statistical study of Pc1-2 magnetic pulsations in the equatorial magnetosphere: 1. Equatorial occurrence distributions. J. Geophys. Res. 97, 3075 (1992a) B.J. Anderson, R.E. Erlandson, L.J. Zanetti, A statistical study of Pc1-2 magnetic pulsations in the equatorial magnetosphere: 2. Wave properties. J. Geophys. Res. 97, 3089 (1992b) M. Ashour-Abdalla, C.F. Kennel, Nonconvective and convective electron cyclotron harmonic instabilities. J. Geophys. Res. 83, 1531–1543 (1978) M. Ashour-Abdalla, J. Berchem, J. Buchner, L.M. Zelenyi, Chaotic scattering and acceleration of ions in Earth’s magnetotail. Geophys. Res. Lett. 17, 2317–2320 (1990). doi:10.1029/GL017i013p02317 G. Belmont, D. Fontaine, P. Canu, Are equatorial electron cyclotron waves responsible for diffuse auroral electron precipitation? J. Geophys. Res. 88(A11), 9163–9170 (1983) T.J. Birmingham, T.G. Northrop, C.G. Falthammar, Charged particle diffusion by violation of the third adiabatic invariant. Phys. Fluids 10, 660 (1968) J. Bortnik, R.M. Thorne, N.P. Meredith, Modeling the propagation characteristics of chorus using CRRES suprathermal electron fluxes. J. Geophys. Res. 112, A08204 (2007). doi:10.1029/2006JA012237 J. Bortnik, R.M. Thorne, U.S. Inan, Nonlinear interaction of energetic electrons with large amplitude chorus. Geophys. Res. Lett. 35, L21102 (2008). doi:10.1029/2008GL035500 T. Bräysy, K. Mursula, G. Marklund, Ion cyclotron waves during a great magnetic storm observed by Freja double-probe electric field instrument. J. Geophys. Res. 103, 4145 (1998) A.W. Breneman, C.A. Kletzing, J. Pickett, J. Chum, O. Santolik, Statistics of multispacecraft observations of chorus dispersion and source location. J. Geophys. Res. 114, A06202 (2009). doi:10.1029/2008JA013549 N.L. Bunch, M. Spasojevic, Y.Y. Shprits, X. Gu, F. Foust, The spectral extent of chorus in the off-equatorial magnetosphere. J. Geophys. Res. Space Phys. 118, 1–6 (2013). doi:10.1029/2012JA018182 J.L. Burch, Diagnosis of auroral acceleration mechanisms by particle measurements, in Auroral Physics, ed. by C.-I. Meng, M.J. Rycroft, L.A. Frank (Cambridge University Press, Cambridge, 1991), pp. 97–109 W.J. Burtis, R.A. Helliwell, Banded chorus—a new type of VLF radiation observed in the magnetosphere by OGO 1 and OGO 3. J. Geophys. Res. 74(11), 3002–3010 (1969). doi:10.1029/JA074i011p03002 W. Burtis, R. Helliwell, Magnetospheric chorus: amplitude and growth rate. J. Geophys. Res. 80(22), 3265–3270 (1975). doi:10.1029/JA080i022p03265 W.J. Burtis, R.A. Helliwell, Magnetospheric chorus: occurrence patterns and normalized frequency. Planet. Space Sci. 24, 1007–1010 (1976). doi:10.1016/0032-0633(76)90119-7 R.K. Burton, R.E. Holzer, The origin and propagation of chorus in the outer magnetosphere. J. Geophys. Res. 79(7), 1014–1023 (1974). doi:10.1029/JA079i007p01014 C. Cattell et al., Discovery of very large amplitude whistler-mode waves in Earth’s radiation belts. Geophys. Res. Lett. 35, L01105 (2008). doi:10.1029/2007GL032009 M.W. Chen, M. Schulz, Simulations of storm time diffuse aurora with plasmasheet electrons in strong pitch angle diffusion. J. Geophys. Res. 106(A2), 1873–1886 (2001a) M.W. Chen, M. Schulz, Simulations of diffuse aurora with plasma sheet electrons in pitch angle diffusion less than everywhere strong. J. Geophys. Res. 106(A12), 28949–28966 (2001b) M.W. Chen, M. Schulz, P.C. Anderson, G. Lu, G. Germany, M. Wüest, Storm time distributions of diffuse auroral electron energy and X-ray flux: comparison of drift-loss simulations with observations. J. Geophys. Res. 110, A03210 (2005). doi:10.1029/2004JA010725 J.M. Cornwall, F.V. Coroniti, R.M. Thorne, Turbulent loss of ring current protons. J. Geophys. Res. 75, 4699 (1970) F.V. Coroniti, Space plasma turbulent dissipation: reality of myth? Space Sci. Rev. 42, 399–410 (1985) C.M. Cully, J.W. Bonnell, R.E. Ergun, THEMIS observations of long-lived regions of large-amplitude whistler waves in the inner magnetosphere. Geophys. Res. Lett. 35, L17S16 (2008). doi:10.1029/2008GL033643 G.T. Davidson, Pitch angle diffusion in morningside aurorae 1. The role of the loss cone in the formation of impulsive bursts of precipitation. J. Geophys. Res. 91(A4), 4413–4427 (1985) G.T. Davidson, Pitch-angle diffusion and the origin of temporal and spatial structures in morningside aurorae. Space Sci. Rev. 53, 45–82 (1990) E. Donovan, B. Jackel, D. Klumpar, R. Strangeway, Energy dependence of the isotropy boundary latitude, in Proc. of Atmos. Studies by Optical Methods, vol. 92 (Sodankylä Geophysical Observatory Publications, Finland, 2003), pp. 11–14 Y. Ebihara, Y.-M. Tanaka, S. Takasaki, A.T. Weatherwax, M. Taguchi, Quasi-stationary auroral patches observed at the South Pole station. J. Geophys. Res. 112, A01201 (2007). doi:10.1029/2006JA012087 R.E. Erlandson, A.J. Ukhorskiy, Observations of electromagnetic ion cyclotron waves during geomagnetic storms: wave occurrence and pitch angle scattering. J. Geophys. Res. 106, 3883 (2001) Y.I. Feldstein, Some problems concerning the morphology of auroras and magnetic disturbances at high latitudes. Geomagn. Aeron. 3, 183–192 (1963) M.-C. Fok, R.B. Horne, N.P. Meredith, S.A. Glauert, Radiation belt environment model: application to space weather nowcasting. J. Geophys. Res. 113, A03S08 (2008). doi:10.1029/2007JA012558 D. Fontaine, M. Blanc, A theoretical approach to the morphology and the dynamics of diffuse auroral zones. J. Geophys. Res. 88(A9), 7171–7184 (1983) L.A. Frank, K.L. Ackerson, Observations of charged particle precipitation into the auroral zone. J. Geophys. Res. 76, 3612 (1971). doi:10.1029/JA076i016p03612 B.J. Fraser, T.S. Nguyen, Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere? J. Atmos. Sol.-Terr. Phys. 63, 1225 (2001) B.J. Fraser, J.C. Samson, Y.D. Hu, R.L. McPherron, C.T. Russell, Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2. J. Geophys. Res. 97, 3063 (1992) B.J. Fraser, H.J. Singer, W.J. Hughes, J.R. Wygant, R.R. Anderson, Y.D. Hu, CRRES Poynting vector observations of electromagnetic ion cyclotron waves near the plasmapause. J. Geophys. Res. 101, 15331 (1996) R.W. Fredricks, F.L. Scarf, Recent studies of magnetospheric electric field emissions above the electron gyrofrequency. J. Geophys. Res. 78(1), 310–314 (1973). doi:10.1029/JA078i001p00310 H. Fritz, Polarlichter (L. Gerold’s Sohn, Vienna, 1873). 255 pp. R. Gendrin, General relationships between wave amplification and particle diffusion in a magnetoplasma. Rev. Geophys. 19(1), 171–184 (1981). doi:10.1029/RG019i001p00171 M.L. Gilson, J. Raeder, E. Donovan, Y.S. Ge, L. Kepko, Global simulation of proton precipitation due to field line curvature during substorms. J. Geophys. Res. 117, A05216 (2012). doi:10.1029/2012JA017562 S.A. Glauert, R.B. Horne, Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J. Geophys. Res. 110, A04206 (2005). doi:10.1029/2004JA010851 B.E. Goldstein, B.T. Tsurutani, Wave normal directions of chorus near the equatorial source region. J. Geophys. Res. 89(A5), 2789–2810 (1984). doi:10.1029/JA089iA05p02789 M.P. Gough, P.J. Christiansen, G. Martelli, E.J. Gershuny, Interaction of electrostatic waves with warm electrons at the geomagnetic equator. Nature 279, 515–517 (1979). doi:10.1038/279515a0 D.A. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics: With Space and Laboratory Applications (Cambridge University Press, Cambridge, 2005) D.A. Hamlin, R. Karplus, R.C. Vik, K.M. Watson, Mirror and azimuthal drift frequencies for geomagnetically trapped particles. J. Geophys. Res. 66(1), 1–4 (1961) D. Han, X. Chen, J. Liu, Q. Qiu, K. Keika, Z. Hu, J. Liu, H. Hu, H. Yang, An extensive survey of dayside diffuse aurora based on optical observations at Yellow River Station. J. Geophys. Res. Space Phys. 120 (2015). doi:10.1002/2015JA021699 N. Haque, M. Spasojevic, O. Santolík, U.S. Inan, Wave normal angles of magnetospheric chorus emissions observed on the polar spacecraft. J. Geophys. Res. 115, A00F07 (2010). doi:10.1029/2009JA014717 D.A. Hardy, M.S. Gussenhoven, E. Holeman, A statistical model of auroral electron precipitation. J. Geophys. Res. 90(A5), 4229–4248 (1985). doi:10.1029/JA090iA05p04229 D.A. Hardy, M.S. Gussenhoven, D. Brautigam, A statistical model of auroral ion precipitation. J. Geophys. Res. 94, 370–392 (1989). doi:10.1029/JA094iA01p00370 M. Hayakawa, Y. Yamanaka, M. Parrot, F. Lefeuvre, The wave normals of magnetospheric chorus emissions observed on board GEOS 2. J. Geophys. Res. 89(A5), 2811–2821 (1984). doi:10.1029/JA089iA05p02811 M. Hayakawa, K. Ohta, S. Shimakura, Spaced direction finding of nighttime whistlers at low and equatorial latitudes and their propagation mechanism. J. Geophys. Res. 95(A9), 15091–15102 (1990). doi:10.1029/JA095iA09p15091 R.B. Horne, Path-integrated growth of electrostatic waves: the generation of terrestrial myriametric radiation. J. Geophys. Res. 94(A7), 8895–8909 (1989) R.B. Horne, R.M. Thorne, Convective instabilities of electromagnetic ion cyclotron waves in the outer magnetosphere. J. Geophys. Res. 99, 17259–17273 (1994) R.B. Horne, R.M. Thorne, Electron pitch angle diffusion by electrostatic electron cyclotron harmonic waves: the origin of pancake distributions. J. Geophys. Res. 105(A3), 5391–5402 (2000) R.B. Horne, R.M. Thorne, N.P. Meredith, R.R. Anderson, Diffuse auroral electron scattering by electron cyclotron harmonic and whistler mode waves during an isolated substorm. J. Geophys. Res. 108(A7), 1290 (2003). doi:10.1029/2002JA009736 R.B. Horne, R.M. Thorne, S.A. Glauert, J.M. Albert, N.P. Meredith, R.R. Anderson, Timescale for radiation belt electron acceleration by whistler mode chorus waves. J. Geophys. Res. 110, A03225 (2005). doi:10.1029/2004JA010811 G.B. Hospodarsky, T.F. Averkamp, W.S. Kurth, D.A. Gurnett, M. Dougherty, U. Inan, T. Wood, Wave normal and Poynting vector calculations using the Cassini radio and plasma wave instrument. J. Geophys. Res. 106(A12), 30253–30269 (2001). doi:10.1029/2001JA900114 Z.-J. Hu et al., Synoptic distribution of dayside aurora: multiple-wavelength all-sky observation at Yellow River Station in Ny-Ålesund, Svalbard. J. Atmos. Sol.-Terr. Phys. 71, 794–804 (2009). doi:10.1016/j.jastp.2009.02.010 Z.-J. Hu, H.-G. Yang, D. Han, D.-H. Huang, B. Zhang, H.-Q. Hu, R.-Y. Liu, Dayside auroral emissions controlled by IMF: a survey for dayside auroral excitation at 557.7 and 630.0 nm in Ny-Ålesund, Svalbard. J. Geophys. Res. 117, A02201 (2012). doi:10.1029/2011JA017188 W.L. Imhof, J.B. Reagan, E.E. Gaines, Studies of the sharply defined L dependent energy threshold for isotropy at the midnight trapping boundary. J. Geophys. Res. 84, 6371–6384 (1979) U. Inan, Y. Chiu, G. Davidson, Whistler-mode chorus and morning-side aurorae. Geophys. Res. Lett. 19, 653–656 (1992) A.D. Johnstone, D.M. Walton, R. Liu, D. Hardy, Pitch angle diffusion of low-energy electrons by whistler mode waves. J. Geophys. Res. 98, 5959–5967 (1993) S.L. Jones et al., PFISR and ROPA observations of pulsating aurora. J. Atmos. Sol.-Terr. Phys. 71, 708 (2009) S.L. Jones, M.R. Lessard, K. Rychert, E. Spanswick, E. Donovan, Large scale aspects and temporal evolution of pulsating aurora. J. Geophys. Res. 116, A03214 (2011). doi:10.1029/2010JA015840 V.K. Jordanova, J.U. Kozyra, A.F. Nagy, Effects of heavy ions on the quasi-linear diffusion coefficients from resonant interactions with electromagnetic ion cyclotron waves. J. Geophys. Res. 101(A9), 19771–19778 (1996). doi:10.1029/96JA01641 V.K. Jordanova, C.J. Farrugia, R.M. Thorne, G.V. Khazanov, G.D. Reeves, M.F. Thomsen, Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997, storm. J. Geophys. Res. 106, 7 (2001) V.K. Jordanova, R.M. Thorne, W. Li, Y. Miyoshi, Excitation of whistler mode chorus from global ring current simulations. J. Geophys. Res. 115, A00F10 (2010). doi:10.1029/2009JA014810 Y. Katoh, Y. Omura, Computer simulation of chorus wave generation in the Earth’s inner magnetosphere. Geophys. Res. Lett. 34, L03102 (2007). doi:10.1029/2006GL028594 K. Keika, K. Takahashi, A.Y. Ukhorskiy, Y. Miyoshi, Global characteristics of electromagnetic ion cyclotron waves: occurrence rate and its storm dependence. J. Geophys. Res. Space Phys. 118, 4135–4150 (2013). doi:10.1002/jgra.50385 C.F. Kennel, Consequences of a magnetospheric plasma. Rev. Geophys. 7(1,2), 379–419 (1969) C.F. Kennel, M. Ashour-Abdalla, Electrostatic waves and the strong diffusion of magnetospheric electrons, in Magnetospheric Plasma Physics, ed. by A. Nishida (Center for Academic Publications, Tokyo, 1982), pp. 245–344 C.F. Kennel, F. Engelmann, Velocity space diffusion from weak plasma turbulence in a magnetic field. Phys. Fluids 9(12), 2377–2388 (1966) C.F. Kennel, H. Petschek, Limit on stably trapped particle fluxes. J. Geophys. Res. 71(1), 1–28 (1966) C.F. Kennel, F.L. Scarf, R.W. Fredricks, J.H. McGehee, F.V. Coroniti, VLF electric field observations in the magnetosphere. J. Geophys. Res. 75(31), 6136–6152 (1970) H.C. Koons, J.L. Roeder, A survey of equatorial magnetospheric wave activity between 5 and 8 RE. Planet. Space Sci. 38(10), 1335–1341 (1990). doi:10.1016/0032-0633(90)90136-E J.U. Kozyra, T.E. Cravens, A.F. Nagy, E.G. Fontheim, R.S.B. Ong, Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region. J. Geophys. Res. 89, 2217–2233 (1984) M. Kubyshkina, V. Sergeev, N. Tsyganenko, V. Angelopoulos, A. Runov, H. Singer, K.H. Glassmeier, H.U. Auster, W. Baumjohann, Toward adapted time-dependent magnetospheric models: a simple approach based on tuning the standard model. J. Geophys. Res. 114, A00C21 (2009). doi:10.1029/2008JA013547 M. Kubyshkina, V. Sergeev, N. Tsyganenko, V. Angelopoulos, A. Runov, E. Donovan, H. Singer, U. Auster, W. Baumjohann, Time-dependent magnetospheric configuration and breakup mapping during a substorm. J. Geophys. Res. 116, A00I27 (2011). doi:10.1029/2010JA015882 D.S. Lauben, U.S. Inan, T.F. Bell, D.A. Gurnett, Source characteristics of ELF/VLF chorus. J. Geophys. Res. 107(A12), 1429 (2002). doi:10.1029/2000JA003019 M. Lessard, A review of pulsating aurora, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, ed. by A. Keiling, E. Donovan, F. Bagenal, T. Karlsson. AGU Monograph (2012) W. Li, R.M. Thorne, V. Angelopoulos, J. Bortnik, C.M. Cully, B. Ni, O. LeContel, A. Roux, U. Auster, W. Magnes, Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft. Geophys. Res. Lett. 36, L09104 (2009). doi:10.1029/2009GL037595 W. Li et al., THEMIS analysis of observed equatorial electron distributions responsible for the chorus excitation. J. Geophys. Res. 115, A00F11 (2010). doi:10.1029/2009JA014845 W. Li, J. Bortnik, R.M. Thorne, Y. Nishimura, V. Angelopoulos, O. Le Contel, J.B. Bonnell, Global distribution of wave amplitudes and wave normal distributions of chorus waves with high-resolution THEMIS wave observations. J. Geophys. Res. 116, A12205 (2011a). doi:10.1029/2011JA017035 W. Li, J. Bortnik, R.M. Thorne, Y. Nishimura, V. Angelopoulos, L. Chen, Modulation of whistler-mode chorus waves: 2 role of density variations. J. Geophys. Res. 116, A06206 (2011b). doi:10.1029/2010JA016313 W. Li, R.M. Thorne, J. Bortnik, Y. Nishimura, V. Angelopoulos, Modulation of whistler mode chorus waves: 1. Role of compressional Pc4–5 pulsations. J. Geophys. Res. 116, A06205 (2011c). doi:10.1029/2010JA016312 W. Li, R.M. Thorne, J. Bortnik, Y.Y. Shprits, Y. Nishimura, V. Angelopoulos, C. Chaston, O. Le Contel, J.W. Bonnell, Typical properties of rising and falling tone chorus waves. Geophys. Res. Lett. 38, L14103 (2011d). doi:10.1029/2011GL047925 J. Liang, V. Uritsky, E. Donovan, B. Ni, E. Spanswick, T. Trondsen, J. Bonnell, A. Roux, U. Auster, D. Larson, THEMIS observations of electron cyclotron harmonic emissions, ULF waves, and pulsating auroras on January 4 2009. J. Geophys. Res. 115, A10235 (2010). doi:10.1029/2009JA015148 J. Liang, B. Ni, E. Spanswick, M. Kubyshkina, E.F. Donovan, V.M. Uritsky, R.M. Thorne, V. Angelopoulos, Fast earthward flows, electron cyclotron harmonic waves, and diffuse auroras: conjugate observations and synthesized scenario. J. Geophys. Res. 116, A12220 (2011a). doi:10.1029/2011JA017094 J. Liang, E. Spanswick, M.J. Nicolls, E.F. Donovan, D. Lummerzheim, W. Liu, (2011b), Multi-instrument observations of soft-electron precipitation and its association with magnetospheric flows. J. Geophys. Res. 116. doi:10.1029/2010JA015867 J. Liang, E. Donovan, E. Spanswick, V. Angelopoulos, Multiprobe estimation of field line curvature radius in the equatorial magnetosphere and the use of proton precipitations in magnetosphere-ionosphere mapping. J. Geophys. Res. Space Phys. 118, 4924–4945 (2013). doi:10.1002/jgra.50454 J. Liang, E. Donovan, B. Ni, C. Yue, F. Jiang, V. Angelopoulos, On an energy-latitude dispersion pattern of ion precipitation potentially associated with magnetospheric EMIC waves. J. Geophys. Res. Space Phys. 119, 8137–8160 (2014). doi:10.1002/2014JA020226 E. Loomis, On the geographic distribution of auroras in the northern hemisphere. Am. J. Sci. Arts 30, 89–94 (1860) A.T.Y. Lui, C.D. Anger, A uniform belt of diffuse auroral emissions seen by the ISIS-2 scanning photometer. Planet. Space Sci. 21, 809 (1973) A.T.Y. Lui, D. Venkatesan, C.D. Anger, S.-I. Akasofu, W.J. Heikkila, J.D. Winningham, J.R. Burrows, Simultaneous observations of particle precipitations and auroral emissions by the isis 2 satellite in the 19-24 MLT sector. J. Geophys. Res. 82(16), 2210–2226 (1977) D. Lummerzheim, Electron transport and optical emissions in the aurora. Ph.D. thesis, Univ. of Alaska, Fairbanks (1987) L.R. Lyons, Electron diffusion driven by magnetospheric electrostatic waves. J. Geophys. Res. 79(4), 575–580 (1974a) L.R. Lyons, General relations for resonant particle diffusion in pitch angle and energy. J. Plasma Phys. 12, 45–49 (1974b). doi:10.1017/S0022377800024910 L. Lyons, R. Thorne, C. Kennel, Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J. Geophys. Res. 77(19), 3455–3474 (1972) Q. Ma, B. Ni, X. Tao, R.M. Thorne, Evolution of the plasma sheet electron pitch angle distribution by whistler-mode chorus waves in non-dipolar magnetic fields. Ann. Geophys. 30, 751–760 (2012). doi:10.5194/angeo-30-751-2012 Q. Ma et al., Modeling inward diffusion and slow decay of energetic electrons in the Earth’s outer radiation belt. Geophys. Res. Lett. 42, 987–995 (2015). doi:10.1002/2014GL062977 J.P. McCollough, S.R. Elkington, D.N. Baker, The role of Shabansky orbits in compression-related electromagnetic ion cyclotron wave growth. J. Geophys. Res. 117, A01208 (2012). doi:10.1029/2011JA016948 C.-I. Meng, B. Mauk, C.E. McIlwain, Electron precipitation of evening diffuse aurora and its conjugate electron fluxes near the magnetospheric equator. J. Geophys. Res. 84(A6), 2545–2558 (1979) N.P. Meredith, R.B. Horne, A.D. Johnstone, R.R. Anderson, The temporal evolution of electron distributions and associated wave activity following substorm injections in the inner magnetosphere. J. Geophys. Res. 105(A6), 12907–12917 (2000) N.P. Meredith, R.B. Horne, R.R. Anderson, Substorm dependence of chorus amplitudes: implications for the acceleration of electrons to relativistic energies. J. Geophys. Res. 106(A7), 13165–13178 (2001). doi:10.1029/2000JA900156 N.P. Meredith, M. Cain, R.B. Horne, R.M. Thorne, D. Summers, R.R. Anderson, Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods. J. Geophys. Res. 108(A6), 1248 (2003a). doi:10.1029/2002JA009764 N.P. Meredith, R.M. Thorne, R.B. Horne, D. Summers, B.J. Fraser, R.R. Anderson, Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES. J. Geophys. Res. 108(A6), 1250 (2003b). doi:10.1029/2002JA009700 N.P. Meredith, R.B. Horne, R.M. Thorne, R.R. Anderson, Survey of upper band chorus and ECH waves: implications for the diffuse aurora. J. Geophys. Res. 114, A07218 (2009). doi:10.1029/2009JA014230 N.P. Meredith, R.B. Horne, T. Kersten, B.J. Fraser, R.S. Grew, Global morphology and spectral properties of EMIC waves derived from CRRES observations. J. Geophys. Res. Space Phys. 119, 5328–5342 (2014). doi:10.1002/2014JA020064 K. Min, J. Lee, K. Keika, W. Li, Global distribution of EMIC waves derived from THEMIS observations. J. Geophys. Res. 117, A05219 (2012). doi:10.1029/2012JA017515 Y. Miyoshi et al., Time of flight analysis of pulsating aurora electrons, considering wave-particle interactions with propagating whistler mode waves. J. Geophys. Res. 115, A10312 (2010). doi:10.1029/2009JA015127 Y. Miyoshi et al., Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probes observations. J. Geophys. Res. 120 (2015). doi:10.1029/2014JA020690 T.E. Moore, R.L. Arnoldy, J. Feynman, D.A. Hardy, Propagating substorm injection fronts. J. Geophys. Res. 86, 6713–6726 (1981). doi:10.1029/JA086iA08p06713 S.K. Morley, S.T. Ables, M.D. Sciffer, B.J. Fraser, Multipoint observations of Pc1-2 waves in the afternoon sector. J. Geophys. Res. 114, A09205 (2009). doi:10.1029/2009JA014162 H. Muto, M. Hayakawa, M. Parrot, F. Lefeuvre, Direction finding of half-gyrofrequency VLF emissions in the off-equatorial region of the magnetosphere and their generation and propagation. J. Geophys. Res. 92(A7), 7538–7550 (1987). doi:10.1029/JA092iA07p07538 A. Nakajima et al., Electron and wave characteristics observed by the THEMIS satellites near the magnetic equator during a pulsating aurora. J. Geophys. Res. 117, A03219 (2012). doi:10.1029/2009JA015127 P.T. Newell, Reconsidering the inverted-V particle signature: relative frequency of large-scale electron acceleration events. J. Geophys. Res. 105, 15779 (2000). doi:10.1029/1999JA000051 P.T. Newell, T. Sotirelis, S. Wing, Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J. Geophys. Res. 114, A09207 (2009). doi:10.1029/2009JA014326 P.T. Newell, T. Sotirelis, S. Wing, Seasonal variations in diffuse, monoenergetic, and broadband aurora. J. Geophys. Res. 115, A03216 (2010). doi:10.1029/2009JA014805 B. Ni, R.M. Thorne, Y.Y. Shprits, J. Bortnik, Resonant scattering of plasma sheet electrons by whistler-mode chorus: contribution to diffuse auroral precipitation. Geophys. Res. Lett. 35, L11106 (2008). doi:10.1029/2008GL034032 B. Ni, R.M. Thorne, R.B. Horne, N.P. Meredith, Y.Y. Shprits, L. Chen, W. Li, Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 1. Evaluation for electrostatic electron cyclotron harmonic waves. J. Geophys. Res. 116, A04218 (2011a). doi:10.1029/2010JA016232 B. Ni, R.M. Thorne, J. Liang, V. Angelopoulos, C. Cully, W. Li, X. Zhang, M. Hartinger, O. LeContel, A. Roux, Global distribution of electrostatic electron cyclotron harmonic waves observed on THEMIS. Geophys. Res. Lett. 38, L17105 (2011b). doi:10.1029/2011GL048793 B. Ni, R.M. Thorne, N.P. Meredith, R.B. Horne, Y.Y. Shprits, Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 2. Evaluation for whistler mode chorus waves. J. Geophys. Res. 116, A04219 (2011c). doi:10.1029/2010JA016233 B. Ni, R.M. Thorne, N.P. Meredith, Y.Y. Shprits, R.B. Horne, Diffuse auroral scattering by whistler mode chorus waves: dependence on wave normal angle distribution. J. Geophys. Res. 116, A10207 (2011d). doi:10.1029/2011JA016517 B. Ni, R.M. Thorne, Y.Y. Shprits, K.G. Orlova, N.P. Meredith, Chorus-driven resonant scattering of diffuse auroral electrons in nondipolar magnetic fields. J. Geophys. Res. 116, A06225 (2011e). doi:10.1029/2011JA016453 B. Ni, J. Liang, R.M. Thorne, V. Angelopoulos, R.B. Horne, M. Kubyshkina, E. Spanswick, E.F. Donovan, D. Lummerzheim, Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the outer magnetosphere: a detailed case study. J. Geophys. Res. 117, A01218 (2012a). doi:10.1029/2011JA017095 B. Ni, R.M. Thorne, Q. Ma, Bounce-averaged Fokker-Planck diffusion equation in non-dipolar magnetic fields with applications to the Dungey magnetosphere. Ann. Geophys. 30, 733–750 (2012b). doi:10.5194/angeo-30-733-2012 B. Ni, J. Bortnik, Y. Nishimura, R.M. Thorne, W. Li, V. Angelopoulos, Y. Ebihara, A.T. Weatherwax, Chorus wave scattering responsible for the Earth’s dayside diffuse auroral precipitation: a detailed case study. J. Geophys. Res. Space Phys. 19, 897–908 (2014). doi:10.1002/2013JA019507 B. Ni, X. Cao, Z. Zou, C. Zhou, X. Gu, J. Bortnik, J. Zhang, S. Fu, Z. Zhao, R. Shi, L. Xie, Resonant scattering of outer zone relativistic electrons by multi-band EMIC waves and resultant electron loss timescales. J. Geophys. Res. Space Phys. 120 (2015). doi:10.1002/2015JA021466 Y. Nishimura et al., Identifying the driver of pulsating aurora. Science 330, 81–84 (2010). doi:10.1126/science.1193186 Y. Nishimura, J. Bortnik, W. Li, R.M. Thorne, L. Chen, L.R. Lyons, V. Angelopoulos, S.B. Mende, J. Bonnell, O. Le Contel, C. Cully, R. Ergun, U. Auster, Multi-event study of the correlation between pulsating aurora and whistler-mode chorus emissions. J. Geophys. Res. 116, A11221 (2011). doi:10.1029/2011JA016876 Y. Nishimura et al., Structures of dayside whistler-mode waves deduced from conjugate diffuse aurora. J. Geophys. Res. Space Phys. 118, 664–673 (2013). doi:10.1029/2012JA018242 T. Nishiyama et al., The source region and its characteristic of pulsating aurora based on the Reimei observations. J. Geophys. Res. 116, A03226 (2011). doi:10.1029/2010JA015507 D. Nunn, Y. Omura, H. Matsumoto, I. Nagano, S. Yagitani, The numerical simulation of VLF chorus and discrete emissions observed on the Geotail satellite using a Vlasov code. J. Geophys. Res. 102(A12), 27083–27097 (1997). doi:10.1029/97JA02518 Y. Omura, Y. Katoh, D. Summers, Theory and simulation of the generation of whistler-mode chorus. J. Geophys. Res. 113, A04223 (2008). doi:10.1029/2007JA012622 K.G. Orlova, Y.Y. Shprits, Dependence of pitch-angle scattering rates and loss timescales on the magnetic field model. Geophys. Res. Lett. 37, L05105 (2010). doi:10.1029/2009GL041639 K.G. Orlova, Y.Y. Shprits, On the bounce-averaging of scattering rates and the calculation of bounce period. Phys. Plasmas 18, 092904 (2011). doi:10.1063/1.3638137 K. Orlova, Y.Y. Shprits, Model of lifetimes of the outer radiation belt electrons in a realistic magnetic field using realistic chorus wave parameters. J. Geophys. Res. Space Phys. 119(2), 770–780 (2014). doi:10.1002/2013JA019596 M. Ozaki et al., Observed correlation between pulsating aurora and chorus wave at Syowa station in Antarctica: a case study. J. Geophys. Res. 117, A08211 (2012). doi:10.1029/2011JA017478 C. Paranicas, W.J. Hughes, H.J. Singer, R.R. Anderson, Banded electrostatic emissions observed by the CRRES plasma wave experiment. J. Geophys. Res. 97(A9), 13889–13898 (1992) M. Parrot, C.A. Gaye, A statistical survey of ELF waves in a geostationary orbit. Geophys. Res. Lett. 21(23), 2463–2466 (1994). doi:10.1029/94GL01700 S.M. Petrinec, D.L. Chenette, J. Mobilia, M.A. Rinaldi, W.L. Imhof, Statistical X ray auroral emissions—PIXIE observations. Geophys. Res. Lett. 26(11), 1565–1568 (1999) J.S. Pickett et al., Cluster observations of EMIC triggered emissions in association with Pc1 waves near Earth’s plasmapause. Geophys. Res. Lett. 37, L09104 (2010). doi:10.1029/2010GL042648 J.L. Roeder, H.C. Koons, A survey of electron cyclotron waves in the magnetosphere and the diffuse auroral electron precipitation. J. Geophys. Res. 94(A3), 2529–2541 (1989) J.G. Roederer, Dynamics of Geomagnetically Trapped Radiation (Springer, New York, 1970) M. Samara, R.G. Michell, Ground-based observations of diffuse auroral frequencies in the context of whistler mode chorus. J. Geophys. Res. 115, A00F18 (2010). doi:10.1029/2009JA014852 M. Samara, R.G. Michell, K. Asamura, M. Hirahara, D.L. Hampton, H.C. Stenbaek-Nielsen, Ground-based observations of diffuse auroral structures in conjunction with Reimei measurements. Ann. Geophys. 28, 873–881 (2010) B.P. Sandford, Variations of auroral emissions with time, magnetic activity and the solar cycle. J. Atmos. Terr. Phys. 30, 1921–1942 (1968) O. Santolík, D.A. Gurnett, J.S. Pickett, M. Parrot, N. Cornilleau-Wehrlin, Spatio-temporal structure of storm-time chorus. J. Geophys. Res. 108(A7), 1278 (2003). doi:10.1029/2002JA009791 O. Santolík, D.A. Gurnett, J.S. Pickett, J. Chum, N. Cornilleau-Wehrlin, Oblique propagation of whistler mode waves in the chorus source region. J. Geophys. Res. 114, A00F03 (2009). doi:10.1029/2009JA014586 N. Sato, D.M. Wright, C.W. Carlson, Y. Ebihara, M. Sato, T. Saemundsson, S.E. Milan, M. Lester, Generation region of pulsating aurora obtained simultaneously by the FAST satellite and a Syowa-Iceland conjugate pair of observatories. J. Geophys. Res. 109, A10201 (2004). doi:10.1029/2004JA010419 M. Schulz, Particle drift and loss rates under strong pitch angle diffusion in Dungey’s model magnetosphere. J. Geophys. Res. 103(A1), 61–67 (1998) M. Schulz, L.J. Lanzerotti, Particle Diffusion in the Radiation Belts. Physics and Chemistry in Space (Springer, New York, 1974) V.A. Sergeev, E. Sazhina, N. Tsyganenko, J. Lundblad, F. Soraas, Pitch-angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere. Planet. Space Sci. 31, 1147–1155 (1983) V. Sergeev, V. Angelopoulos, S. Apatenkov, J. Bonnell, R. Ergun, R. Nakamura, J. McFadden, D. Larson, A. Runov, Kinetic structure of the sharp injection/dipolarization front in the flow-braking region. Geophys. Res. Lett. 36, L21105 (2009). doi:10.1029/2009GL040658 R.R. Shaw, D.A. Gurnett, Electrostatic noise bands associated with the electron gyrofrequency and plasma frequency in the outer magnetosphere. J. Geophys. Res. 80(31), 4259–4271 (1975). doi:10.1029/JA080i031p04259 R. Shi, D. Han, B. Ni, Z.-J. Hu, C. Zhou, X. Gu, Intensification of dayside diffuse auroral precipitation: contribution of dayside whistler-mode chorus waves in realistic magnetic fields. Ann. Geophys. 30, 1297–1307 (2012). doi:10.5194/angeo-30-1297-2012 R. Shi, Z.-J. Hu, B. Ni, D. Han, X. Chen, C. Zhou, X. Gu, Modulation of the dayside diffuse auroral intensity by the solar wind dynamic pressure. J. Geophys. Res. Space Phys. 119, 10092–10099 (2014). doi:10.1002/2014JA020180 Y.Y. Shprits, B. Ni, Dependence of the quasi-linear scattering rates on the wave normal distribution of chorus waves. J. Geophys. Res. 114, A11205 (2009). doi:10.1029/2009JA014223 Y.Y. Shprits, W. Li, R.M. Thorne, Controlling effect of the pitch-angle scattering rates near the edge of the loss cone on electron lifetimes. J. Geophys. Res. 111, A12206 (2006a). doi:10.1029/2006JA011758 Y.Y. Shprits, R.M. Thorne, R.B. Horne, D. Summers, Bounce-averaged diffusion coefficients for field-aligned chorus waves. J. Geophys. Res. 111, A10225 (2006b). doi:10.1029/2006JA011725 Y.Y. Shprits, S. Elkington, N.P. Meredith, D.A. Subbotin, Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: radial transport. J. Atmos. Sol.-Terr. Phys. 70, 1679–1693 (2008a). doi:10.1016/j.jastp.2008.06.008 Y.Y. Shprits, D.A. Subbotin, N.P. Meredith, S. Elkington, Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: local acceleration and loss. J. Atmos. Sol.-Terr. Phys. 70, 1694–1713 (2008b). doi:10.1016/j.jastp.2008.06.014 Y.Y. Shprits, D. Subbotin, B. Ni, Evolution of electron fluxes in the outer radiation belt computed with the VERB code. J. Geophys. Res. 114, A11209 (2009). doi:10.1029/2008JA013784 A.R. Soto-Chavez, G. Wang, A. Bhattacharjee, G.Y. Fu, H.M. Smith, A model for falling-tone chorus. Geophys. Res. Lett. 41, 1838–1845 (2014). doi:10.1002/2014GL059320 D. Steele, D. McEwen, Electron auroral excitation efficiencies and intensity ratios. J. Geophys. Res. 95(A7), 10321–10336 (1990) T.H. Stix, The Theory of Plasma Waves (McGraw-Hill, New York, 1962) Z. Su, H. Zheng, S. Wang, Evolution of electron pitch angle distribution due to interactions with whistler mode chorus following substorm injections. J. Geophys. Res. 114, A08202 (2009). doi:10.1029/2009JA014269 D. Summers, Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere. J. Geophys. Res. 110, A08213 (2005). doi:10.1029/2005JA011159 D. Summers, R.M. Thorne, Relativistic electron pitch angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res. 108(A4), 1143 (2003). doi:10.1029/2002JA009489 D. Summers, R.M. Thorne, F. Xiao, Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J. Geophys. Res. 103(A9), 20487–20500 (1998). doi:10.1029/98JA01740 D. Summers, B. Ni, N.P. Meredith, Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. J. Geophys. Res. 112, A04207 (2007). doi:10.1029/2006JA011993 D.W. Swift, Mechanisms for auroral precipitation: a review. Rev. Geophys. 19(1), 185–211 (1981) X. Tao, R.M. Thorne, W. Li, B. Ni, N.P. Meredith, R.B. Horne, Evolution of electron pitch angle distributions following injection from the plasma sheet. J. Geophys. Res. 116, A04229 (2011). doi:10.1029/2010JA016245 R.M. Thorne, R. Horne, The contribution of ion-cyclotron waves to electron heating and SAR-arc excitation near the stormtime plasmapause. Geophys. Res. Lett. 19, 417–420 (1992). doi:10.1029/92GL00089 R.M. Thorne, R. Horne, Modulation of electromagnetic ion cyclotron instability due to interaction with ring current \(\mathrm{O}+\) during magnetic storms. J. Geophys. Res. 102(A7), 14155–14163 (1997). doi:10.1029/96JA04019 R.M. Thorne, C.F. Kennel, Relativistic electron precipitation during magnetic storm main phase. J. Geophys. Res. 76(19), 4446–4453 (1971). doi:10.1029/JA076i019p04446 R.M. Thorne, B. Ni, X. Tao, R.B. Horne, N.P. Meredith, Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature 467 (2010). doi:10.1038/nature09467 R.M. Thorne, W. Li, B. Ni, Q. Ma, J. Bortnik, L. Chen, D.N. Baker, H.E. Spence, G.D. Reeves, M.G. Henderson, C.A. Kletzing, W.S. Kurth, G.B. Hospodarsky, J.B. Blake, J.F. Fennell, S.G. Claudepierre, Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature 504, 411–414 (2013a). doi:10.1038/nature12889 R.M. Thorne, B. Ni, X. Tao, L. Chen, W. Li, N.P. Meredith, R.B. Horne, Y.Y. Shprits, Correction to “Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 1. Evaluation for electrostatic electron cyclotron harmonic waves”, ”Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 2. Evaluation for whistler mode chorus waves”, and ”Evolution of pitch-angle distributions following injection from the plasma sheet”. J. Geophys. Res. Space Phys. 118, 839–842 (2013b). doi:10.1002/jgra.50154 K. Tsuruda et al., Correlations between the very low frequency chorus and pulsating aurora observed by low-light-level television at \(\mathrm{L}=4.4\). Can. J. Phys. 59, 1042–1048 (1981). doi:10.1139/p81-137 B.T. Tsurutani, E.J. Smith, Postmidnight chorus: a substorm phenomenon. J. Geophys. Res. 79(1), 118–127 (1974). doi:10.1029/JA079i001p00118 B.T. Tsurutani, E.J. Smith, Two types of magnetospheric ELF chorus and their substorm dependences. J. Geophys. Res. 82(32), 5112–5128 (1977). doi:10.1029/JA082i032p05112 N.A. Tsyganenko, A model of the near magnetosphere with a dawn-dusk asymmetry 1. Mathematical structure. J. Geophys. Res. 107(A8), 1179 (2002a). doi:10.1029/2001JA000219 N.A. Tsyganenko, A model of the near magnetosphere with a dawn-dusk asymmetry: 2. Parameterization and fitting to observations. J. Geophys. Res. 107(A8), 1176 (2002b). doi:10.1029/2001JA000220 M.E. Usanova et al., Conjugate ground and multisatellite observations of compression-related EMIC Pc1 waves and associated proton precipitation. J. Geophys. Res. 115, A07208 (2010). doi:10.1029/2009JA014935 M.E. Usanova, I.R. Mann, J. Bortnik, L. Shao, V. Angelopoulos, THEMIS observations of electromagnetic ion cyclotron wave occurrence: dependence on AE, SYMH, and solar wind dynamic pressure. J. Geophys. Res. 117, A10218 (2012). doi:10.1029/2012JA018049 E. Villalón, W.J. Burke, Pitch angle scattering of diffuse auroral electrons by whistler mode waves. J. Geophys. Res. 100(A10), 19361–19369 (1995) A.D.M. Walker, Plasma Waves in the Magnetosphere (Springer, New York, 1993) M. Walt, Introduction to Geomagnetically Trapped Radiation (Cambridge University Press, Cambridge, 1994) J.D. Winningham, C.D. Anger, G.G. Shepherd, E.J. Weber, R.A. Wagner, A case study of the aurora, high-latitude ionosphere, and particle precipitation during near-steady state conditions. J. Geophys. Res. 83, 5717–5731 (1978) T. Yamamoto, On the temporal fluctuations of pulsating auroral luminosity. J. Geophys. Res. 93, 897–911 (1988) A.W. Yau et al., Rocket-borne measurements of particle pulsation in pulsating aurora. J. Geophys. Res. 86, 5673–5681 (1981) T.S.T. Young, J.D. Callen, J.E. McCune, High-frequency electrostatic waves in the magnetosphere. J. Geophys. Res. 78(7), 1082–1099 (1973). doi:10.1029/JA078i007p01082 X. Yu, Z. Yuan, D. Wang, H. Li, S. Huang, Z. Wang, Q. Zheng, M. Zhou, C.A. Kletzing, J.R. Wygant, In situ observations of EMIC waves in \(\mathrm{O}+\) band by the Van Allen Probe A. Geophys. Res. Lett. 42, 1312–1317 (2015). doi:10.1002/2015GL063250 X. Zhang, V. Angelopoulos, On the relationship of electrostatic cyclotron harmonic emissions with electron injections and dipolarization fronts. J. Geophys. Res. Space Phys. 119 (2014). doi:10.1002/2013JA019540 J.-C. Zhang, L.M. Kistler, C.G. Mouikis, M.W. Dumlop, B. Klecker, J.-A. Sauvaud, A case study of EMIC wave-associated He+ energization in the outer magnetosphere: cluster and Double Star 1 observations. J. Geophys. Res. 115, A06212 (2010). doi:10.1029/2009JA014784 J.-C. Zhang, L.M. Kistler, C.G. Mouikis, B. Klecker, J.-A. Sauvaud, M.W. Dumlop, A statistical study of EMIC wave-associated He+ energization in the outer magnetosphere: cluster/CODIF observations. J. Geophys. Res. 116, A11201 (2011). doi:10.1029/2011JA016690 X. Zhang, V. Angelopoulos, B. Ni, R.M. Thorne, R.B. Horne, Quasi-steady, marginally unstable electron cyclotron harmonic wave amplitudes. J. Geophys. Res. Space Phys. 118, 3165–3172 (2013). doi:10.1002/jgra.50319 X. Zhang, V. Angelopoulos, B. Ni, R.M. Thorne, R.B. Horne, Extent of ECH wave emissions in Earth’s magnetotail. J. Geophys. Res. 119, 5561–5574 (2014). doi:10.1002/2014JA019931 X. Zhang, V. Angelopoulos, B. Ni, R.M. Thorne, Predominance of ECH wave contribution to diffuse aurora in Earth’s outer magnetosphere. J. Geophys. Res. Space Phys. 120, 295–309 (2015). doi:10.1002/2014JA020455