Origin of the scaling laws of sediment transport

Sk Zeeshan Ali1, Subhasish Dey2
1Sk Zeeshan Ali Google Scholar Find this author on PubMed
2Subhasish Dey http://orcid.org/0000-0002-1952-4491 [email protected] Google Scholar Find this author on PubMed

Tóm tắt

In this paper, we discover the origin of the scaling laws of sediment transport under turbulent flow over a sediment bed, for the first time, from the perspective of the phenomenological theory of turbulence. The results reveal that for the incipient motion of sediment particles, the densimetric Froude number obeys the ‘(1 +  σ )/4’ scaling law with the relative roughness (ratio of particle diameter to approach flow depth), where σ is the spectral exponent of turbulent energy spectrum. However, for the bedforms, the densimetric Froude number obeys a ‘(1 +  σ )/6’ scaling law with the relative roughness in the enstrophy inertial range and the energy inertial range. For the bedload flux, the bedload transport intensity obeys the ‘3/2’ and ‘(1 +  σ )/4’ scaling laws with the transport stage parameter and the relative roughness, respectively. For the suspended load flux, the non-dimensional suspended sediment concentration obeys the ‘ Z ’ scaling law with the non-dimensional vertical distance within the wall shear layer, where Z is the Rouse number. For the scour in contracted streams, the non-dimensional scour depth obeys the ‘4/(3 −  σ )’, ‘−4/(3 −  σ )’ and ‘−(1 +  σ )/(3 −  σ )’ scaling laws with the densimetric Froude number, the channel contraction ratio (ratio of contracted channel width to approach channel width) and the relative roughness, respectively.

Từ khóa


Tài liệu tham khảo

Kolmogorov AN, 1941, The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 30, 299

10.1017/CBO9781139170666

10.1146/annurev.fluid.29.1.435

10.1103/PhysRevLett.83.734

10.1103/PhysRevLett.88.014501

10.1063/1.1762301

10.1103/PhysRevLett.81.2244

10.1103/PhysRevLett.96.044502

10.1061/9780784408148

Shields AF. 1936 Anwendung der Ahnlichkeitsmechanik und der Turbulentzforschung auf die Geshiebebewegung Mitt. Preuss. Versuchsanst. Wasserbau Schiffbau vol. 26 26 pp. (English translation by W. P. Ott & J. C. van Uchelen 1936. Rep . 167 36 pp. Calif. Inst. of Technol. Pasadena).

10.1063/1.4955103

Lischtvan LL Lebediev VV. 1959 Gidrologia i Gidraulika v Mostovom Doroshnom Straitielvie. Leningrad (Hydrology and Hydraulics in Bridge and Road Building) Gidrometeoizdat Leningrad.

Neill CR. 1967 Mean velocity criterion for scour of course uniform bed material. In Proc. of the 12th Congress of Int. Association for Hydraulic Research Fort Collins Colorado USA vol. 3 pp. 46–54. Madrid Spain: IAHR.

Ashida K Bayazit M. 1973 Initiation of motion and roughness of flows in steep channels. In Proc. of the 15th Congress of Int. Association for Hydraulic Research Istanbul Turkey vol. 1 pp. 475–484. Madrid Spain: IAHR.

Olivero ML. 1984 Movimiento incipiente de partículas en flujo torrencial. Application Report for Associate Professor University de Los Andes Mérida Venezuela pp. 169.

Aguirre-Pe J Fuentes R. 1991 Movement of big particles in steep macro-rough streams. In Proc. of the 24th Congress of Int. Association for Hydraulic Research Madrid Spain pp. 149–158. Madrid Spain: IAHR.

Bathurst JC, 1983, Mechanics of sediment transport, 207

Bathurst JC Cao HH Graf WH. 1984 The data from the EPFL study of hydraulics and sediment transport in a steep flume . Report no. CH-1015. Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland 64.

10.1007/978-3-642-19062-9

10.1146/annurev-fluid-010814-014637

10.1017/jfm.2016.334

10.1017/S0022112094001370

10.1017/CBO9780511840531

10.1063/1.2358332

Fedele JJ, 2001, Riverine, coastal and estuarine morphodynamics, 37, 10.1007/978-3-662-04571-8_3

10.1098/rsta.1956.0020

du Boys MP, 1879, Le rhone et les rivieres a lit affouillable, Ann. Ponts chaussés, 18, 141

Einstein HA. 1950 The bed-load function for sediment transportation in open channel flows. Technical bulletin 1026 United States Department of Agriculture Soil Conservation Service Washington DC.

10.2166/nh.1976.0019

10.1061/(ASCE)0733-9429(1984)110:10(1431)

10.1007/s00348-006-0195-9

10.1029/2009JF001628

10.1029/2012JF002353

10.1061/(ASCE)0733-9429(1992)118:4(536)

Meyer-Peter E Müller R. 1948 Formulas for bed-load transport. In Proc. of the 2nd Meeting of Int. Association for Hydraulic Research Stockholm Sweden vol. 3 pp. 39–64. Madrid Spain: IAHR.

10.1080/00221687609499677

10.1061/(ASCE)0733-9429(1984)110:10(1494)

10.1061/(ASCE)0733-9429(1997)123:12(1130)

Rouse H, 1937, Modern conceptions of the mechanics of turbulence, Trans. Am. Soc. Civ. Eng., 102, 463, 10.1061/TACEAT.0004872

10.1029/WR022i010p01377

Lyn DA. 1986 Turbulence and turbulent transport in sediment-laden open-channel flows. PhD thesis California Institute of Technology California USA.

Komura S, 1966, Equilibrium depth of scour in long constrictions, J. Hydraul. Div., 92, 17, 10.1061/JYCEAJ.0001504

Gill MA, 1981, Bed erosion in rectangular long constriction, J. Hydraul. Div., 107, 273, 10.1061/JYCEAJ.0005626

Webby MG. 1984 General scour at contraction. RRU bulletin 73 National Roads Board Bridge Design and Research Seminar New Zealand pp. 109–118.

10.1680/iwtme.1993.23590

10.1061/(ASCE)0733-9429(2005)131:12(1036)

10.1029/TR015i002p00454

Laursen EM, 1963, An analysis of relief bridge scour, J. Hydraul. Div., 89, 93, 10.1061/JYCEAJ.0000896