Origin of organic compounds on the primitive earth and in meteorites

Journal of Molecular Evolution - Tập 9 - Trang 59-72 - 1976
Stanley L. Miller1, Harold C. Urey1, J. Oró2
1Department of Chemistry, University of California, San Diego La Jolla, USA
2Departments of Biophysical Sciences and Chemistry, University of Houston, USA

Tóm tắt

The role and relative contributions of different forms of energy to the synthesis of amino acids and other organic compounds on the primitive earth, in the parent bodies or carbonaceous chondrites, and in the solar nebula are examined. A single source of energy or a single process would not account for all the organic compounds synthesized in the solar system. Electric discharges appear to produce amino acids more efficiently than other sources of energy and the composition of the synthesized amino acids is qualitatively and quantitatively similar to those found in the Murchison meteorite. Ultraviolet light is also likely to have played a major role in prebiotic synthesis. Although the energy in the sun's spectrum that can be absorbed by the major constituents of the primitive atmosphere is not large, reactive trace components such as H2S and formaldehyde absorb at longer wavelengths where greater amounts of energy are available and produce amino acids by reactions involving hot hydrogen atoms. The thermal reaction of CO + H2 + NH3 on Fischer-Tropsch catalysts generates intermediates that lead to amino acids and other organic compounds that have been found in meteorites. However, this synthesis appears to be less efficient than electric discharges and to require a special set of reaction conditions. It should be emphasized that after the reactive organic intermediates are generated by the above processes, the subsequent reactions which produce the more complet biochemical compounds are low temperature homogenous reactions occurring in an aqueous environment.

Tài liệu tham khảo

Alvén, H., Arrhenius, G. (1973). Astrophys. Space Sci. 21, 117–176 Anders, E. (1973). In: Molecules in the galactic environment, M.A. Gordon and L.E. Snyder, eds., pp. 429–450. New York: Wiley Anders, E., Hayatsu, R., Studier, M.H. (1973). Science 182, 781–790 Anders, E., Hayatsu, R., Studier, M.H. (1974). Astrophys. J. 192, L101-L105 Bar-Nun, A. (1974). In: Cosmochemical evolution and the origins of life, Oró, J. et al., eds., pp. 109–115. Dordrecht: Reidel Bar-Nun, A., Bar-Nun, N., Bauer, S.H., Sagan, C. (1970). Science 168, 470–473 Bar-Nun, A., Bar-Nun, N., Bauer, S.H., Sagan, C. (1971). In: Molecular evolution I. Chemical evolution and the origin of life, R. Buvet and C. Ponnaperuma, eds., pp. 114–122. Amsterdam: North Holland Becker, R.S., Hong, K., Hong, J.H. (1974). J. Mol. Evol. 4, 157–172 Biemann, K., Oró, J., Orgel, L.E., Neir, A.O., Anderson, D.M., Simmonds, P.G., Flory, D., Diaz, A.V., Rushneck, D.R., Biller, J.A. (1976). Science 194, 72–76 Buhl, D. (1971). Nature 234, 331 Bullard, E. (1954). In: The earth as a planet, G.P. Kuiper, ed., pp. 110. Chicago: University of Chicago Press Byers, H.R., ed. (1953). Thunderstorm electricity. Chicago: University of Chicago Press Cameron, A.G.W. (1966). Earth Planet. Sci. Lett. 1, 93–96 Chalmers, J.A. (1957). Atmospheric electricity. London: Pergamon Press Chapman, C.R. (1975). Sci. Am. 232, 24–33 Cronin, J.R., Moore, C.B. (1971). Science 172, 1327–1329 Dayhoff, M.O., Lippincott, E.R., Eck, R.V. (1964). Science 146, 1461–1464 Eck, R.V., Lippincott, E.R., Dayhoff, M.O., Pratt, Y.T. (1966). Science 153, 628–633 Ferris, J.P., Orgel, L.E. (1966). J. Am. Chem. Soc. 88, 1074 Ferris, J.P., Sanchez, R.A., Orgel, L.E. (1968). J. Mol. Biol. 33, 693–704 Folsome, C.E., Lawless, J., Romiez, M., Ponnamperuma, C. (1971). Nature 232, 108 Friedmann, N., Haverland, W.J., Miller, S.L. (1971). In: Molecular evolution I. Chemical evolution and the origin of life, R. Buvet and C. Ponnamperuma, eds., pp. 123–135. Amsterdam: North Holland Friedmann, N., Miller, S.L. (1969). Science 166, 766–767 Friedmann, N., Bovee, H.H., Miller, S.L. (1970). J. Org. Chem. 35, 3230–3232 Gelpi, E., Han, J., Nooner, D.W., Oró, J. (1970). Geochim. Cosmochim. Acta 34, 965–979 Gordon, M.A., Snyder, L.E., eds. (1973). Molecules in the galactic environment. New York: Wiley Groth, W., Weyssenhoff, H.V. (1957). Naturwissenschaften 44, 510–511 Groth, W., Weyssenhoff, H.V. (1960). Planet. Space Sci. 2, 79–85 Harada, K., Fox, S.W. (1964). Nature 201, 336–337 Hayatsu, R., Studier, M.H., Anders, E. (1971). Geochim. Cosmochim. Acta 35, 939–951 Hayatsu, R., Studier, M.H., Matsuoka, S., Anders, E. (1972). Geochim. Cosmochim. Acta 36, 555–571 Hayatsu, R., Studier, M.H., Moore, L.P., Anders, E. (1975). Geochim. Cosmochim. Acta 39, 471–488 Hayatsu, R., Studier, M.H., Oda, A., Fuse, K., Anders, E. (1968). Geochim. Cosmochim. Acta 32, 175–190 Herbig, G.H. (1970). Mem. Soc. Roy. Sci. Liege, Tome XIX, 13–26 Hinteregger, H.E. (1963). Space Sci. Rev. 4, 461–497 Hochstim, A.R. (1963). Proc. Nat. Acad. Sci. U.S. 50, 200–208 Hochstim, A.R. (1971). In: Chemical evolution and the origin of life, R. Buvet and C. Ponnamperuma, eds., pp. 96–113. Amsterdam: North Holland Hong, K., Hong, J., Becker, R.S. (1974). Science 184, 984–987 Hubbard, J.S., Hardy, J.P., Horowitz, N.R. (1971). Proc. Nat. Acad. Sci. U.S. 68, 574–578 Hubbard, J.S. Hardy, J.P., Voecks, G.E., Golub, E.E. (1973). J. Mol. Evol. 2, 149–166 Hubbard, J.S., Voecks, G.E., Hobby, G.L., Ferris, J.P., Williams, E.A., Nicodem, D.E. (1975). J. Mol. Evol. 5, 223–241 Kenyon, D.H., Steinmann, G. (1969). Biochemical predestination. New York: McGraw-Hill Khare, B.N., Sagan, C. (1971). Nature 232, 577–579 Khare, B.N., Sagan, C. (1973). In: Molecules in the galactic environment, M.A. Gordon, L.E. Snyder, eds., pp. 399–408. New York: Wiley Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I.R., Moore, C. (1970). Nature 228, 923–926 Kvenvolden, K.A., Lawless, J.G., Ponnamperuma, C. (1971). Proc. Nat. Acad. Sci. U.S. 69, 486–490 Lancet, M.S., Anders, E. (1970). Science 170, 980–982 Lawless, J.G., Boynton, C.G. (1973). Nature 243, 405–407 Lawless, J.G., Kvenvolden, K.A., Peterson, E., Ponnamperuma, C. (1972). Nature 236, 66–67 Lawless, J.G., Zeitman, B., Pereira, W.E., Summons, R.E., Duffield, A.M. (1974). Nature 251, 40–42 Lemmon, R.M. (1970). Chem. Rev. 70, 95–109 Lowe, C.U., Rees, M.W., Markham, R. (1963). Nature 199, 219–222 Miller, S.L. (1953). Science 117, 528–529 Miller, S.L. (1955). J. Am. Chem. Soc. 77, 2351–2361 Miller, S.L. (1957a). Ann. N.Y. Acad. Sci. 69, 260–274 Miller, S.L. (1957b). Biochim. Biophys. Acta 23, 480–489 Miller, S.L. (1959). In: The origin of life, A. I. Oparin, ed., pp. 123–135. Oxford: Pergamon Press Miller, S.L., Orgel, L.E. (1974). The origin of life on the earth. Englewood Cliffs, N.J.: Prentice-Hall Miller, S.L., Urey, H.C. (1959). Science 130, 245–251 Nooner, D.W., Gibert, J.M., Gelpi, E., Oró, J. (1976). Geochim. Cosmochim. Acta 40, 915–924 Oparin, A.I. (1938). The origin of life, New York: Macmillan (1953) New York: Dover Opik, E.J. (1966). Advan. Astron. Astrophys. 4, 301–336 Oró, J. (1960). Biochem. Biophys. Res. Comm. 2, 407–412 Oró, J. (1961). Nature 190, 389–390 Oró, J. (1963). Ann. N.Y. Acad. Sci. 108, 464–481 Oró, J. (1965). In: The origin of prebiological systems, S. Fox, ed., pp. 137–171. New York: Academic Press Oró, J. (1968). J. Brit. Interplanet. Soc. 21, 12–25 Oró, J. (1972). Space Life Sci., 3, 507–550 Oró, J. (1976). In: Reflections on biochemistry, A. Kornberg et al., eds., pp. 423–443. Oxford: Pergamon Press Oró, J., Gibert, J., Lichtenstein, H., Wikstrom, S., Flory, D.A. (1971). Nature 230, 105–106 Oró, J., Han, J. (1966). Science 153, 1393–1395 Oró, J., Han, J. (1967). J. Gas. Chromatog. 5, 480–485 Oró, J., Kamat, S.S. (1961). Nature 190, 422–443 Oró, J., Kimball, A.P. (1961). Arch. Biochem. Biophys. 94, 217–227 Oró, J., Kimball, A.P. (1962). Arch. Biochem. Biophys. 96, 293–313 Oró, J., Miller, S.L., Ponnaperuma, C., Young, R.S., eds. (1974). Cosmochemical evolution and the origins of life. Dordrecht: Reidel Rank, D.M., Townes, C.H., Welch, W.J. (1971): Science 174, 1083–1090 Ring, D., Wolman, Y., Friedmann, N., Miller, S.L. (1972). Proc. Nat. Acad. Sci. U.S. 69, 765–768 Sagan, C. (1965). Nature 206, 448 Sagan, C. (1973). In: Molecules in the galactic environment, M.A. Gordon, L.E. Snyder, eds., pp. 451–468. New York: Wiley Sagan, C., Khare, B.N. (1971). Science 173, 417–420 Sanchez, R.A., Ferris, J., Orgel, L.E. (1966a). Science 153, 72 Sanchez, R.A., Ferris, J., Orgel, L.E. (1966b). Science 154, 784–785 Sanchez, R.A., Ferris, J., Orgel, L.E. (1967). J. Mol. Biol. 30, 223–253 Sanchez, R.A., Ferris, J., Orgel, L.E. (1968). J. Mol. Biol. 38, 121–128 Schonland, B. (1953). Atmospheric electricity, pp. 42, 630. London: Methuen Skewes, H.B. (1966). High temperature initiation of natural amino acid synthesis. Ph. D. Dissertation, Univ. of Houston Stephen-Sherwood, E., Oró, J. (1973). Space Life Sci. 4, 5–31 Storch, H.H., Golumbic, N., Anderson, R.B. (1951). The Fischer-Tropsch and related syntheses. New York: Wiley Studier, M.H., Hayatsu, R., Anders, E. (1968). Geochim. Cosmochim. Acta 32, 151–173 Studier, M.H., Hayatsu, R., Anders, E. (1972). Geochim. Cosmochim. Acta 36, 189–215 Suess, H.E. (1962). J. Geophys. Res. 67, 2029–2034 Tseng, S., Chang, S. (1974). Nature 248, 575–577 Urey, H.C. (1952a). Proc. Nat. Acad. Sci. U.S. 38, 351–363 Urey, H.C. (1952b). The planets, p. 149. New Haven: Yale University Press Urey, H.C. (1972). In: Origin of the solar system, pp. 206–214. Nice: C.N.R.S. Whipple, F.L. (1966). Science 153, 54–56 Wolman, Y., Haverland, W.J., Miller, S.L. (1972). Proc. Nat. Acad. Sci. U.S. 69, 809–811 Wood, J.A. (1958). Smithsonian Astrophys. Obs. Tech. Rep. 10 Yang, C.C., Oró, J. (1971). In: Molecular evolution I. Chemical evolution and the origin of life, R. Buvet, C. Ponnamperuma, eds., pp. 152–167. Amsterdam: North Holland Yoshino, D., Hayatsu, R., Anders, E. (1971). Geochim. Cosmochim. Acta 35, 927–938 Zeitman, B., Chang, S., Lawless, J.G. (1974). Nature 251, 42–43