Origin of inhomogeneity in spark plasma sintered bismuth antimony telluride thermoelectric nanocomposites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kim, S. I.; Lee, K. H.; Mun, H. A.; Kim, H. S.; Hwang, S. W.; Roll, J. W.; Yang, D. J.; Shin, W. H.; Li, X. S.; Lee, Y. H. et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science2015, 348, 109–114.
Biswas, K; He, J. Q.; Blum, I. D.; Wu, C. I.; Hogan, T. P.; Seidman, D. N; Dravid, V. P.; Kanatzidis, M. G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature2012, 489, 414–418.
Korkosz, R. J.; Chasapis, T. C; Lo, S. H; Doak, J. W.; Kim, Y. J.; Wu, C. I.; Hatzikraniotis, E.; Hogan, T. P.; Seidman, D. N; Wolverton, C. et al. High ZT in p-type (PbTe)1-2x(PbSe),(PbS), thermoelectric materials. J. Am. Chem. Soc.2014, 136, 3225–3237.
Zhao, L. D.; Tan, G. J.; Hao, S. Q.; He, J. Q.; Pei, Y. L.; Chi, H.; Wang, H; Gong, S. K.; Xu, H. B.; Dravid, V. P. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science2016, 351, 141–144
Zhao, L. D.; Lo, S. H; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C; Wolverton, C; Dravid, V. P.; Kanatzidis, M. G Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature2014, 508, 373–377.
Biswas, K; Zhao, L. D.; Kanatzidis, M. G Tellurium-free thermoelectric: The anisotropic n-type semiconductor Bi2S3. Adv. Energy Mater.2012, 2, 634–638.
Zhao, L. D.; Berardan, D.; Pei, Y. L.; Byl, C; Pinsard-Gaudart, L.; Dragoe, N. Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl. Phys. Lett.2010, 97, 092118.
Liu, Y; Zhao, L. D.; Liu, Y. C; Lan, J. L.; Xu, W.; Li, R; Zhang, B. P.; Berardan, D.; Dragoe, N.; Lin, Y. H. et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J. Am. Chem. Soc.2011,133, 20112–20115.
Ren, G K; Wang, S. Y; Zhu, Y. C; Ventura, K. J.; Tan, X.; Xu, W.; Lin, Y. H; Yang, J. H; Nan, C. W. Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier-phonon coupling. Energy Environ. Sci.2017,10, 1590–1599.
Ge, Z. H; Zhang, B. P.; Chen, Y. X.; Yu, Z. X.; Liu, Y; Li, J. F. Synthesis and transport property of Cu1.8S as a promising thermoelectric compound. Chem. Commun.2011, 47, 12697–12699.
He, Y; Day, T; Zhang, T. S.; Liu, H. L.; Shi, X.; Chen, L. D.; Snyder, G J. High thermoelectric performance in non-toxic earth-abundant copper sulfide. Adv. Mater.2014, 26, 3974–3978.
Liang, L. R.; Chen, G. M.; Guo, C. Y. Polypyrrole nanostructures and their thermoelectric performance. Mater. Chem. Front.2017, 1, 380–386.
Liu, L. Y; Sun, Y. H; Li, W. B.; Zhang, J. J.; Huang, X.; Chen, Z. J.; Sun, Y. M.; Di, C. G; Xu, W.; Zhu, D. B. Flexible unipolar thermoelectric devices based on patterned poly[K,(Ni-ethylenetetrathiolate)] thin films. Mater. Chem. Front. 2017, 1, 2111–2116.
Wang, L. M.; Yao, Q.; Shi, W.; Qu, S. Y; Chen, L. D. Engineering carrier scattering at the interfaces in polyaniline based nanocomposites for high thermoelectric performances. Mater. Chem. Front. 2017, 1, 741–748.
Yang, T; Cheng, T. X.; Zhou, G D. Zhou, Effects of Ag or Yb doping on thermoelectric properties of Ca3CO3.9Cu0.1O9-δ.;. Chem. J. Chin. Univ.2017, 38, 335–340.
Caillat, T; Carle, M.; Pierrat, P.; Scherrer, H; Scherrer, S. Zhou, Thermoelectric properties of (Bi,Sbi-,)2Te3 single crystal solid solutions grown by the T.H.M. method. J. Phys. Chem. Solids1992, 53, 1121–1129.
Yan, X.; Poudel, B.; Ma, Y; Liu, W. S.; Joshi, G; Wang, H; Lan, Y. C; Wang, D. Z.; Chen, G; Ren, Z. F. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3Nana Lett.2010, 10, 3373–3378.
Zhang, Q.; Chere, E. K; Sun, J. Y; Cao, F; Dahal, K; Chen, S.; Chen, G; Ren, Z. F. Studies on thermoelectric properties of n-type polycrystalline SnSe1-xSx by iodine doping. Adv. Energy Mater. 2015,5, 1500360.
Liu, W. S.; Zhang, Q. Y; Lan, Y. C; Chen, S.; Yan, X.; Zhang, Q.; Wang, H; Wang, D. Z.; Chen, G; Ren, Z. F. Thermoelectric property studies on Cu-doped n-type Cu,Bi2Te27Se0.3 nanocomposites. Adv. Energy Mater.2011, 1, 577–587.
Soni, A.; Shen, Y. Q.; Yin, M.; Zhao, Y. Y; Yu, L. G; Hu, X.; Dong, Z. L.; Khor, K. A.; Dresselhaus, M. S.; Xiong, Q. H. Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites. Nana Lett.2012, 12, 4305–4310.
Hong, M.; Chasapis, T. C; Chen, Z. G; Yang, L.; Kanatzidis, M. G; Snyder, G. J.; Zou, J. n-type Bi2Te3-xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nana2016, 10, 4719–4727.
Xu, B.; Feng, T. L.; Agne, M. T; Zhou, L.; Ruan, X. L.; Snyder, G. J.; Wu, Y. Highly porous thermoelectric nanocomposites with low thermal conductivity and high figure of merit from large-scale solution-synthesized Bi2Te25Se0.5 hollow nanostructures. Angew. Chem.2017, 129, 3600–3605.
Xu, B.; Agne, M. T; Feng, T. L.; Chasapis, T. C; Ruan, X. L.; Zhou, Y. L.; Zheng, H. M.; Bahk, J. H; Kanatzidis, M. G; Snyder, G J. et al. Nanocomposites from solution-synthesized PbTe-BiSbTe nanoheterostructure with unity figure of merit at low-medium temperatures (500-600 K). Adv. Mater. 2017, 29, 1605140
Zheng, G; Su, X. L.; Li, X. R.; Liang, T; Xie, H. Y; She, X. Y; Yan, Y. G; Uher, C; Kanatzidis, M. G; Tang, X. F. Snyder, Toward high-thermoelectric-performance large-size nanostructured BiSbTe alloys via optimization of sintering-temperature distribution. Adv. Energy Mater2016, 6, 1600595
Chen, N.; Gascoin, F.; Snyder, G. J.; Miiller, E.; Karpinski, G; Stiewe, C. Snyder, Macroscopic thermoelectric inhomogeneities in (AgSbTe2),(PbTe)1-x. Appl. Phys. Lett.2005, 87, 171903.
Mehta, R. J.; Zhang, Y. L.; Karthik, C; Singh, B.; Siegel, R. W.; Borca-Tasciuc, T.; Ramanath, G A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat. Mater.2012, 11, 233–240.
Zheng, Y; Luo, Y. B.; Du, C. R; Zhu, B. B.; Liang, Q. H.; Hng, H. H.; Hippalgaonkar, K.; Xu, J. W.; Yan, Q. Y. Designing hybrid architectures for advanced thermoelectric materials. Mater. Chem. Front.2017, 1, 2457–2473.
Zhang, G. Q.; Kirk, B.; Jauregui, L. A.; Yang, H. R.; Xu, X. R; Chen, Y. P.; Wu, Y. Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nana Lett.2011, 12, 56–60.
Tang, Z.; Wang, Y; Sun, K.; Kotov, N. A. Spontaneous transformation of stabilizer-depleted binary semiconductor nanoparticles into selenium and tellurium nanowires. Adv. Mater.2005, 17, 358–363.
Bahk, J. H.; Shakouri, A. Minority carrier blocking to enhance the thermoelectric figure of merit in narrow-band-gap semiconductors. Phys. Rev. B2016, 93, 165209.
Cahill, D. G Thermal conductivity measurement from 30 to 750 K: The 3w method. Rev. Sci. Instrum.1990, 61, 802–808.
Kwon, S.; Zheng, J. L.; Wingert, M. C; Cui, S.; Chen, R. K. Unusually high and anisotropic thermal conductivity in amorphous silicon nanostructures. ACS Nano2017, 11, 2470–2476.
Feser, J. P. Scalable routes to efficient thermoelectric materials. Ph.D. Dissertation, University of California, Berkeley, CA, USA, 2010.