Nguồn gốc của các mô hình biến đổi trong cromit phụ từ các metaperidotit Kudada, huyện Đông Singhbhum (Jharkhand, Ấn Độ)

Geological Society of India - Tập 99 - Trang 345-356 - 2023
Ratul Banerjee1, Bijay K. Biswas1, Sisir K. Mondal1
1Department of Geological Sciences, Jadavpur University, Kolkata, India

Tóm tắt

Các thể ultramafic-mafic đã biến đổi ở khu vực Kudada nằm gần Khu vực Đứt gãy Singhbhum (SSZ) ở miền Đông Ấn Độ, nơi những loại đá chính bao gồm schist talc-magnesite và serpentinite với các vein cromit và magnetit phụ. Các thể ultramafic và các đá metavolcanic liên quan là một phần của sự mở rộng về phía Bắc của vành đai đá xanh Gorumahisani có niên đại Early Archean và thuộc về chuỗi supracrustal Nhóm Quặng Sắt (IOG). Nghiên cứu này tiết lộ sự biến đổi thành phần mạnh mẽ trong các cromit phụ từ serpentinite với thành phần lõi của cromit được đặc trưng bởi Cr# [Cr/(Cr+Al)] = 0.53–0.82 và Mg# [Mg/(Mg+Fe2+)] = 0.01–0.17. Sự biến đổi thành phần trên quy mô của một hạt cromit đơn lẻ xảy ra dưới dạng phân vùng nhiều giai đoạn. Để xác định các mô hình phân vùng thành phần, các cromit từ serpentinite được phân thành bốn loại tùy thuộc vào kích thước hạt, độ phản xạ của các viền khác nhau, cường độ gãy và độ xốp, và được hỗ trợ bởi hóa học khoáng chất tại chỗ. Các cromit loại I là những loại ít gãy và không xốp cho thấy viền magnetit chrome bên ngoài bao bọc viền ferritchromit bên trong. Độ xốp chủ yếu phát triển trong các hạt loại II nơi ferritchromit bên trong hình thành xung quanh các khoảng không. Các cromit loại III là những hạt nhỏ tập hợp lại có lõi ferritchromit và viền magnetit chrome trong khi các hạt loại IV hoàn toàn biến đổi thành magnetit chrome. Quan hệ kết cấu và hóa học khoáng chất cho thấy rằng quá trình biến chất và hoạt động của các dịch hydrothermal giàu H2O và CO2 trong suốt quá trình tiến hóa kiến tạo của Khu vực Đứt gãy Singhbhum (SSZ) có thể đã gây ra những mô hình phân vùng này và các biến đổi thành phần trong các cromit phụ của khu vực Kudada. Sự trao đổi cation giữa cromit và các khoáng silicate cùng với sự khuếch tán cation trong hạt trong các vùng Cr-spinel khác nhau tăng cường thêm những quá trình này.

Từ khóa

#cromit phụ #serpentinite #Khu vực Đứt gãy Singhbhum #biến chất #hóa học khoáng chất #H2O #CO2

Tài liệu tham khảo

Abzalov, M.Z. (1998) Chrome-spinels in gabbro-wehrlite intrusions of the Pechenga area, Kola Peninsula, Russia: emphasis on alteration features. Lithos, v.43, pp.109–134. Adhikari A., Mukherjee S. and Vadlamani R. (2021a) A plume-mantle interaction model for the petrogenesis of komatiite-komatiitic basalt-basalt-basaltic andesite volcanism from the Paleoarchean (3.57–3.31 Ga) Iron Ore Group greenstone belts, Singhbhum craton, India: Constraints from trace element geochemistry and Sm-Nd geochronology. Lithos, v.398–399, 106315. Ahmed, A.H. (2013) Highly depleted harzburgite-dunite-chromitite complexes from the Neoproterozoic ophiolite, South Eastern Desert, Egypt, a possible recycled upper mantle lithosphere. Precambrian Res., v.233, pp.173–192. Alt, J.C., Shanks, W.C., Bach, W., Paulick, H., Garrido, C.J. and Beaudoin, G. (2007) Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15°20″ N (ODP Leg 209): a sulfur and oxygen isotope study. Geochem. Geophys. Geosyst., v.8, Q08002. Arai, S. and Miura, M. (2016) Formation and modification of chromitites in the mantle. Lithos, v.264, pp.277–295. Arai, S. and Ahmed, A.H. (2018) Secular Change of Chromite Concentration Processes from the Archean to the Phanerozoic. In: Mondal, S.K. and Griffin, W.L. (Ed.), Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time. Elsevier Inc., Amsterdam, pp.139157. Bach, W., Garrido, C.J., Paulick, H., Harvey, J. and Rosner, M. (2004) Seawater peridotite interactions: first insights from ODP Leg 209, MAR 15°N. Geochem. Geophys. Geosyst., v.5, Q09F26. Bach, W., Paulick, H., Garrido, C.J., Ildefonse, B., Meurer, W.P. and Humphris, S.E. (2006) Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys. Res. Lett., v.33, L13306. Bandyopadhyay, N. (2003) Metamorphic history of the rocks in the southeastern sector of the Proterozoic Singhbhum shear zone and its environs. Ph.D. Thesis, University of Calcutta, Calcutta, India. Banerji, A.K. (1981) Ore genesis and its relationship to volcanism, tectonism, granitic activity, and metasomatism along the Singhbhum shear zone, Eastern India. Econ. Geol., v.76, pp.905–912. Banerjee, R. and Mondal, S.K. (2020) Compositional variation and patterns of alteration in chromites of Archean komatiites from Kapili area, Gorumahisani greenstone belt, Singhbhum Craton (eastern India). International Geological Congress 2020 (IGC2020), 2–8 March, New Delhi, India, Abstract with the program. Banerjee, R., Mondal, S.K., Reisberg, L. and Zhou, X. (2021) Origin of Ni-Cu-sulfide minerals in the komatiitic rock suite of the Archean Gorumahisani Greenstone belt, Singhbhum Craton (eastern India). Virtual Goldschmidt 2021 (4–9 July), Abstract with Program. doi:https://doi.org/10.7185/gold2021.3584 Banerjee, R., Mondal, S.K., Reisberg, L. and Park, J.-W. (2022) Fractionation of trace and platinum-group elements during metamorphism of komatiitic chromites from the early Archean Gorumahishani greenstone belt, Singhbhum Craton (eastern India). Contrib. Mineral. Petrol., v.177, doi:https://doi.org/10.1007/s00410-022-01943-4 Barnes, S.J. (1998) Chromite in komatiites, 1. Magmatic controls on crystallization and composition. Jour. Petrol., v.39, pp.1689–1720. Barnes, S.J. (2000) Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. Jour. Petrol., v.41, pp.387–409. Barnes, S.J., Roeder, P.L. (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. Jour. Petrol., v.42, pp.2279–2302. Basu, A.R., Bandyopadhyay, P.K., Chakrabarti, R. and Zou, H. (2008) Late 3.4 Ga Algoma-type BIF in the Eastern Indian Craton. Geochim. Cosmochim. Acta, v.72, A59. Bhattacharya, H.N. and Mahapatra, S. (2008) Evolution of the Proterozoic rift margin sediments-North Singhbhum Mobile Belt, Jharkhand-Orissa, India. Precambrian Res., v.162, pp.302–316. Bhattacharya, H.N., Nelson, D.R., Thern, E.R. and Altermann, W. (2015) Petrogenesis and geochronology of the Arkasani Granophyre and felsic Dalma volcanic rocks: implications for the evolution of the Proterozoic North Singhbhum Mobile Belt, east India. Geol Mag., v.152, pp.492–503. Biswas, B.K. and Mondal, S.K. (2020) Patterns of alteration in chromites from ultramafic rocks of Kudada area, East Singhbhum district (Jharkhand, eastern India). International Geological Congress 2020 (IGC2020), 2–8 March, New Delhi, India, Abstract with program. Bose, M.K. (2009) Precambrian mafic magmatism in the Singhbhum Craton, Eastern India. Jour. Geol. Soc. India., v.73, pp.13–35. Burkhard, D.J.M. (1993) Accessory chromium spinels: their coexistence and alteration in serpentinites. Geochim. Cosmochim. Acta, v.57, pp.1297–1306. Cameron, E.C. (1975) Postcumulus and subsolidus equilibration of chromite and coexisting silicates in the eastern Bushveld Complex. Geochim. Cosmochim. Acta, v.39, pp.1021–1033. Chaudhuri, T., Satish-Kumar, M., Mazumder, R. and Biswas, S. (2017) Geochemistry and Sm- Nd isotopic characteristics of the Paleoarchean komatiites from Singhbhum Craton, Eastern India and their implications. Precambrian Res., v.298, pp.385–402. Chaudhuri, T., Wan, Y.S., Mazumder, R., Ma, M.Z. and Liu, D.Y. (2018) Evidence of enriched, Hadean Mantle Reservoir from 4.2–4.0 Ga zircon xenocrysts from Paleoarchean TTGs of the Singhbhum Craton, Eastern India. Sci. Rep., v.8, pp.7069. Chowdhury, S., Pal, D.C., Papineau, D. and Lentz, D.R. (2020) Major and trace element and multiple sulfur isotope composition of sulfides from the Paleoproterozoic Surda copper deposit, Singhbhum shear Zone, India: Implications for the mineralization processes. Ore Geol. Rev., v.120, 103396. Colás, V., González-Jiménez, J.M., Griffin, W.L., Fanlo, I., Gervilla, F., O’Reilly, S.Y., Pearson, N.J., Kerestedjian, T. and Proenza, J.A. (2014) Fingerprints of metamorphism in chromite: new insights from minor and trace elements. Chem. Geol., v.389, pp.137–152. Colás, V., González-Jiménez, J.M., Camprubí, A., Proenza, J., Griffin, W., O’Reilly, S., Fanlo, I., Gervilla, F. and González-Partida, E. (2019) A Reappraisal of the Metamorphic History of the Tehuitzingo Chromitite, Puebla State, Mexico. Int. Geol. Rev., v.61, pp.1706–1727. Colás, V., Subias, I., González-Jiménez, J.M., Proenza, J., Fanlo, I., Camprubí, A., Griffin, W., Gervilla, F., O’Reilly, S. and Escayola, M. (2020) Metamorphic fingerprints of Fe-rich chromitites at Eastern Pampean Ranges. Boletin Soc. Geol. Mexic., v.72, A080420. de León, A.C., Schmitt, A.K. and Weber, B. (2022) Multi-episodic formation of baddeleyite and zircon in polymetamorphic anorthosite and rutile-bearing ilmenitite from the Chiapas Massif Complex, Mexico. Jour. Metamorph. Geol., pp.1–35. https://doi.org/10.1111/jmg.12683 Dick, H.J.B. and Bullen, T. (1984) Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol., v.86, pp.54–76. Droop, G. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag., v.51, pp.431–435. Eslami, A., Arai, S., Miura, M. and Mackizadeh, M.A. (2018) Metallogeny of the peridotite-hosted magnetite ores of the Nain ophiolite, Central Iran: Implications for Fe concentration processes during multi-episodic serpentinization. Ore Geol. Rev., v.95, pp.680–694. Evans, B.W. and Frost, B.R. (1975) Chrome-spinel in progressive metamorphism-a preliminary analysis. Geochim. Cosmochim. Acta, v.39, pp.959–972. Fleet, M.E., Angeli, N. and Pan, Y. (1993) Oriented chlorite lamellae in chromite from the Pedra Branca Mafic-Ultramafic Complex, Ceará, Brazil. Amer. Min., v.78(1–2), pp.68–74. Gervilla, F., Padrón-Navarta, J., Kerestedjian, T., Sergeeva, I., González-Jiménez, J. and Fanlo, I. (2012) Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: a two-stage process. Contrib. Mineral. Petrol., v.164, pp.1–15. Gervilla, F., Asta, M., Grolimund, D., Ferreira-Sánchez, D., Samson, V.A., Hunziker, D., Colás, V., González-Jiménez, J.M., Kerestedjian, T.N. and Sergeeva, I. (2019) Diffusion pathways of Fe2+ and Fe3+ during the formation of ferrian chromite: a µXANES study. Contrib. Mineral. Petrol., v.174, pp.65. Gahlan H.A., Arai S., Ahmed A.H., Ishida Y., Abdel Aziz Y.M., Rahimi A. (2006) Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, Anti-Atlas, Morocco: An implication for mobility of iron during serpentinization. Jour. Afr. Earth Sci., v.46, pp.318–330. González-Jiménez, J.M., Kerestedjian, T., Proenza, J.A. and Gervilla, F. (2009) Metamorphism on chromite ores from the Dobromirtsi ultramafic massif, Rhodope Mountains (SE Bulgaria). Geol. Acta, v.7, pp.413–429. González-Jiménez, J.M., Griffin, W.L., Gervilla, F., Proenza, J.A., O’Reilly, S.Y. and Pearson, N.J. (2014) Chromitites in ophiolites: how, where, when, why? Part II. The crystallization of chromitites. Lithos, v.189, pp.140–158. Irvine, T. (1967) Chromian spinel as a petrogenetic indicator: part 2. Petrologic applications. Can. Jour. Earth Sci., v.4, pp.71–103. Kamenetsky, V.S., Crawford, A.J. and Meffre, S. (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Jour. Petrol., v.42, pp.655–671. Mazumder, R. (2005) Proterozoic sedimentation and volcanism in the Singhbhum crustal province, India and their implications. Sediment. Geol., v.176, pp.167–193. Mishra, S., Domuarari, M.P., Wiedenbeck, M., Goswami, J.N., Ray, S. and Saha, A.K. (1999) 207Pb/206Pb zircon ages and the evolution of the Singhbhum Craton, eastern India: an ion microprobe study. Precambrian Res., v.93, pp.139–151. Misra, S. and Johnson, P.T. (2005) Geochronological constraints on the evolution of Singhbhum Mobile Belt and associated basic volcanic of Eastern Indian Shield. Gondwana Res., v.8, pp.129–142. Mondal, S.K., Baidya, T.K., Rao, K.N.G. and Glascock, M.D. (2001) PGE and Ag mineralization in Breccia zone of the Precambrian Nuasahi ultramafic-mafic complex, Orissa India. Can. Mineral., v.39, pp.979–996. Mondal, S.K., Ripley, E.M., Li, C. and Frei, R. (2006) The genesis of Archean chromitites from the Nuasahi and Sukinda Massifs in the Singhbhum Craton, India. Precambrian Res., v.148, pp.45–66. Mondal, S.K., Frei, R. and Ripley, E.M. (2007) Os isotope systematics of Mesoarchean chromitite PGE deposits in the Singhbhum Craton (India): implications for the evolution of lithospheric mantle. Chem. Geol., v.244, pp.391–408. Mondal, S.K. (2009) Chromite and PGE deposits of Mesoarchean ultramafic-mafic suites within the greenstone belts of the Singhbhum Craton (India): implication for mantle heterogeneity and tectonic setting. Jour. Geol. Soc. India, v.73, pp.1–16. Mondal, S.K., Das, E., Banerjee, R. and Reisberg, L. (2019) Trace Element in Chromites of Komatiites from the Archean Gorumahisani Greenstone Belt, Singhbhum Craton (India). Goldschmidt 2019-Barcelona (Spain), Abstract with Program. Mukherjee, R., Mondal, S.K., Rosing, M.T. and Frei, R. (2010) Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar Craton (India): potential parental melts and implication for tectonic setting. Contrib. Mineral. Petrol., v.160, pp.865–885. Mukherjee, R., Mondal, S.K., González-Jiménez, J.M., Griffin, W.L., Pearson, N.J. and O’Reilly, S.Y. (2015) Trace element fingerprints of chromite, magnetite and sulfide from the 3.1 Ga ultramafic-mafic rocks of the Nuggihalli greenstone belt, Western Dharwar Craton (India). Contrib. Mineral. Petrol., v.169, pp.1–23. Mukherjee, R. and Mondal, S.K. (2018) Petrogenetic evolution of chromite deposits in the Archean greenstone belts of India. In: Mondal, S.K. and Griffin, W.L. (Ed.), Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time. Elsevier, Amsterdam, Oxford, Cambridge, pp. 159–195. Mukhopadhyay, J., Beukes, N., Armstrong, R.A., Zimmermann, U., Ghosh, G. and Medda, R.A. (2008) Dating the oldest greenstone in India: a 3.51-Ga precise Pb-Pb SHRIMP zircon age for dacitic lava of the southern Iron Ore Group, Singhbhum Craton. Jour. Geol., v.116, pp.449–461. Pal, D.C., Barton, M.D. and Sarangi, A.K. (2009) Deciphering a multistage history affecting U-Cu(-Fe) mineralization in the Singhbhum Shear Zone, eastern India, using pyrite textures and compositions in the Turamdih U-Cu(-Fe) deposit. Miner. Depos., v.44, pp.61–80. Pal, D.C., Trumbull, R.B. and Wiedenbeck, M. (2010) Chemical and boron isotope compositions of tourmaline from the Jaduguda U (-Cu-Fe) deposit, Singhbhum shear zone, India: Implications for the sources and evolution of mineralizing fluids. Chem. Geol., v.277, pp.245–260. Pal, D.C., Sarkar, S., Mishra, B. and Sarangi, A.K. (2011) Chemical and sulfur isotope compositions of pyrite in the Jaduguda U (-Cu-Fe) deposit, Singhbhum shear zone, eastern India: Implications for sulfide mineralization. Jour. Earth Syst. Sci., v.120, pp.475–488. Pal, D.C. and Rhede, D. (2013) Geochemistry and chemical dating of uraninite in the Jaduguda uranium deposit, Singhbhum shear zone, India-implications for uranium mineralization and geochemical evolution of uraninite. Econ. Geol., v.108, pp.1499–1515. Proenza, J., Ortega-Gutiérrez, F., Camprubí, A., Tritlla, J., Elías-Herrera, M. and Reyes-Salas, M. (2004) Paleozoic serpentinite-enclosed chromitites from Tehuitzingo (Acatlán Complex, southern Mexico): a petrological and mineralogical study. Am. Earth Sci., v.16, pp.649–666. Roeder, P.L. and Campbell, I.H. (1985) The effect of postcumulus reactions on composition of chrome-spinels from the Jimberlana Intrusion. Jour. Petrol., v.26, pp.763–786. Roeder, P.L. (1994) Chromite: from the fiery rain of chondrules to the Kilauea Iki lava lake. Can. Mineral., v.32, pp.729–746. Rollinson, H. (1995) Composition and tectonic settings of chromite deposits through time. Econ. Geol., v.90, pp.2091–2092. Saha, A.K. (1959) Structural and petrological evolution of the diorites of eastern Singhbhum. Quat. Jour. Geol. Min. Metall. SW. India, v.31, pp.91–113. Saha, A.K. (1994) Crustal evolution of Singhbhum-North Orissa, eastern India. Mem. Geol. Soc. India, no.27, pp.1–341. Sarkar, S.C. (1984) Geology and Ore Mineralisation of the Singhbhum Copper-Uranium Belt, Eastern India. Jadavpur University, Calcutta. Schaltegger, U. (2007) Hydrothermal zircon. Elements, v.3(1), pp.51–79. Scowen, P.A.H., Roedder, P.L. and Helz, R.T. (1991) Reequilibration of chromite within Kilauea Iki lava lake, Hawaii. Contrib. Mineral. Petrol., v.107, pp.8–20. Sengupta, S., Paul, D.K., Bishui, P.K., Gupta, S.N., Chakraborty, R. and Sen, P. (1994) A geochemical and Rb-Sr isotopic study of Kuilapal granite and Arkasoni granophyre from the eastern Indian craton. Indian Mineral., v.48, pp.77–88. Sengupta, N., Mukhopadhyay, D., Sengupta, P. and Hoffbauer, R. (2005) Tourmaline-bearing rocks in the Singhbhum shear zone, eastern India: Evidence of boron infiltration during regional metamorphism. Am. Mineral., V.90, pp.1241–1255. Sinha, D.K., Gupta, S., Nautiyal, K., Akhila, V.R., Shrivastava, V.K., Padhi, A.K. and Verma, M.B. (2019) Serpentinized peridotite-hosted uranium mineralization (U-Cr-Ni-Mo-REE-Fe- Mg) in Kudada-Turamdih area: a new environment of metallogeny in Singhbhum shear zone, India. Curr. Sci., v.117, pp.830–838. Stowe, C.W. (1994) Composition and tectonic settings of chromite deposits through time. Econ. Geol., v.89, pp.528–546. Ulmer, G.C. (1974) Alteration of chromite during serpentinization in the Pennsylvania-Maryland district. Am. Mineral., v.59, pp.1236–1241. Upadhdyay, D., Chattopadhyay, S., Kooijman, E., Mezger, K. and Berndt, J. (2014) Magmatic and metamorphic history of Paleoarchean tonalite-trondhjemite-granodiorite (TTG) suite from the Singhbhum craton, eastern India. Precambrian Res., v.252, pp.180–190. Watson, E.B., Wark, D.A. and Thomas, J.B. (2006) Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol., v.151, pp.413–433. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Min 95:185–18. Zhou M-F. and Kerrich R. (1992) Morphology and composition of chromite in komatiites from the Belingwe Greenstone Belt, Zimbabwe. Can. Mineral., v.30, pp.303–317.