Organosilane-doped PVC lattice thin film for optoelectronic applications
Springer Science and Business Media LLC - Trang 1-15 - 2023
Tóm tắt
The novel work for this study is to make new films for the pure and doped PVC with organosilane; thus, it used organosilane moieties (25 mg) mixed with poly(vinyl chloride) (5 g). Thus drop-casting procedure was utilized to make these thin films. The pure PVC and PVC-organosilane (Si-L-NO2/PVC called SI and Si-L-Br called SII) optical properties were studied under the wavelength range from (250 to 1300 nm) using diffusive reflectance equipment. The optical properties like absorption increased up to (87–95%), while reflectance and transmittance decrease when added organosilane molecules. Furthermore, the dielectric constant (real and imaginary) and optical conductivity enhanced, respectively. On the other hand, Urbach energy increases when adding organosilane to PVC structure from 7.7011 to 14.146 eV; furthermore, skin depth, refractive index, and optical density were figured. The energy gap is reduced from 4 to 2.3 eV for the direct transition and from 3.4 to 1.6 eV for the indirect transition. SEM analysis was implemented over thin films of pure PVC and PVC-organosilane to see the morphology of these surfaces. The AFM analysis was utilized to exhibit the topography of the surfaces, thereby finding the surface roughness and the root-mean-square of the surface for these thin films. The improvement for these thin films is used in many applications such as absorption of the light when used as a coating in flat plate collector, and declines the reflectance in radars, strength external applications such as doors, windows, and the dielectric material in electronic devices.
Tài liệu tham khảo
A.N. Alias, Z.M. Zabidi, A.M.M. Ali, M.K. Harun, M.Z.A. Yahya, Optical characterization and properties of polymeric materials for optoelectronic and photonic applications. Int. J. Appl. Sci. Technol. 3(5), 11–38 (2013). https://doi.org/10.56042/ijpap.v61i5.71432
A. Ahmed, M. Abdallh, M.H. Al-Mashhadani, D.S. Ahmed, M. Bufaroosha, A.H. Jawad, E. Yousif, Environmental stability of poly (vinyl chloride) modified by schiff’s base under exposure to UV. Biointerface Res. Appl. Chem. 11, 13465–13473 (2017). https://doi.org/10.33263/BRIAC115.1346513473
I.S. Elashmawi, N.A. Hakeem, L.K. Marei, F.F. Hanna, Structure and performance of ZnO/PVC nanocomposites. Physica B 405(19), 4163–4169 (2010)
A.M. El Sayed, A.M. Abdelghany, A. Abou Elfadl, Structural, optical, mechanical and antibacterial properties of MgO/poly(vinyl acetate)/poly(vinyl chloride) nanocomposites. Braz. J. Phys. (2011). https://doi.org/10.1007/s13538-022-01156-x
R.N. Abed, E. Yousif, A.R. Abed, A.A. Rashad, A. Hadawey, A.H. Jawad, Optical properties of PVC composite modified during light exposure to give high absorption enhancement. J. Non-Cryst. Solids 570, 120946 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120946
Z. Fadhil, D.S. Zageer, A.H. Faris, M.H. Al-Mashhadani, A. Ahmed, H. Hashim, E. Yousif, Extracted lignin from oil palm empty fruit bunch as natural eco-friendly poly (vinyl chloride) photo-stabilizer. Mater. Sci. Energy Technol. 5, 15–21 (2022). https://doi.org/10.1016/j.mset.2021.10.003
A.M. El Sayed, W.M. Morsi, Dielectric relaxation and optical properties of polyvinyl chloride/lead monoxide nanocomposites. Wiley 34, 2031–2039 (2013). https://doi.org/10.1002/pc.22611
S.A. Mahdi, A.A. Ahmed, E. Yousif, M.H. Al-Mashhadani, A. Ahmed, H. Hashim, A.H. Jawad, New organic PVC photo-stabilizers derived from synthesised novel coumarine moieties. Materials Science for Energy Technologies 5, 278–293 (2022). https://doi.org/10.1016/j.mset.2022.04.002
E.T. Abdullah, S.M. Hasan, A.N. Naje, Optical properties of PVC-MWCNT nano composites. Indian J. Pure Appl. Phys. 51, 77–80 (2013). https://doi.org/10.56042/ijpap.v61i5.71432
D.S. Ahmed, F.M. Ibrahim, M. Bufaroosha, M.H. Al-Mashhadani, A.H. Jawad, R.M. Yusop, N. Salih, S.A. Mohammed, E. Yousif, Polyphosphates as thermal stabilizers for poly (vinyl chloride). Mater. Today Proc. 42, 2680–2685 (2021). https://doi.org/10.1016/j.matpr.2020.12.704
E. Alhaydary, E. Yousif, M.H. Al-Mashhadani, D.S. Ahmed, A.H. Jawad, M. Bufaroosha, A.A. Ahmed, Sulfamethoxazole as a ligand to synthesize di-and tri-alkyltin (IV) complexes and using as excellent photo-stabilizers for PVC. J. Polym. Res. 28(12), 1–9 (2021). https://doi.org/10.1007/s10965-021-02822-5
M. Bufaroosha, N. Salih, A.G. Hadi, D.S. Ahmed, M.H. Al-mashhadani, E. Yousif, The Effect of UV aging on the structure of PVC in the presence of organotin (IV) compounds. Al-Nahrain J. Sci. 23(1), 57–61 (2020). https://doi.org/10.22401/ANJS.23.1.0
S.H. Mohamed, A.S. Hameed, E. Yousif, M.H. Alotaibi, D.S. Ahmed, G.A. El-Hiti, New porous silicon-containing organic polymers: synthesis and carbon dioxide uptake. Processes 8(11), 1488 (2020). https://doi.org/10.3390/pr8111488
R.N. Abed, E. Yousif, A.R. Abed, A.A. Rashad, Synthesis thin films of poly (vinyl chloride) doped by aromatic organosilicon to absorb the incident light. SILICON 30, 1–7 (2022). https://doi.org/10.1007/s12633-022-01893-3
K.F. Makris, J. Langeveld, F.H. Clemens, A review on the durability of PVC sewer pipes: research vs. practice. Struct. Infrastruct. Eng. 16(6), 880–897 (2020). https://doi.org/10.1080/15732479.2019.1673442
F. Chiellini, M. Ferri, A. Morelli, L. Dipaola, G. Latini, Perspectives on alternatives to phthalate plasticized poly (vinyl chloride) in medical devices applications. Prog. Polym. Sci. 38(7), 1067–1088 (2013). https://doi.org/10.1016/j.progpolymsci.2013.03.001
Y. Jiang, Z. Yang, Q. Su, L. Chen, J. Wu, J. Meng, Preparation of magnesium-aluminum hydrotalcite by mechanochemical method and its application as heat stabilizer in poly (vinyl chloride). Materials 13(22), 5223 (2020). https://doi.org/10.3390/ma13225223
L. Van der Ven, M.L. Van Gemert, L.F. Batenburg, J.J. Keern, L.H. Gielgens, T.P. Koster, H.R. Fischer, On the action of hydrotalcite-like clay materials as stabilizers in polyvinylchloride. Appl. Clay Sci. 17(1–2), 25–34 (2000). https://doi.org/10.1016/S0169-1317(00)00002-8
L. Palin, G. Rombolà, M. Milanesio, E. Boccaleri, The use of POSS-based nanoadditives for cable-grade PVC: effects on its thermal stability. Polymers 11(7), 1105 (2019). https://doi.org/10.3390/polym11071105
A. Sluszny, M.S. Silverstein, S. Kababya, A. Schmidt, M. Narkis, Novel semi-IPN through vinyl silane polymerization and crosslinking within PVC films. J. Polym. Sci. A Polym. Chem. 39(1), 8–22 (2001). https://doi.org/10.1002/1099-0518(20010101)39:1%3c8::AID-POLA20%3e3.0.CO;2-Q
L. Li, X. Chen, B. He, Crosslinking of rigid poly (vinyl chloride) with epoxysilane. J. Vinyl Add. Tech. 13(2), 103–109 (2007). https://doi.org/10.1002/vnl.20110
S.H. Mohamed, A.S. Hameed, G.A. El-Hiti, D.S. Ahmed, M. Kadhom, M.A. Baashen, M. Bufaroosha, A.A. Ahmed, E. Yousif, A process for the synthesis and use of highly aromatic organosilanes as additives for poly (vinyl chloride) films. Processes. 9(1), 91 (2021). https://doi.org/10.3390/pr9010091
E.T. Al-Tikrity, A.A. Yaseen, E. Yousif, D.S. Ahmed, M.H. Al-Mashhadani, Impact on Poly (Vinyl chloride) of trimethoprim schiff bases as stabilizers. Polym. Polym. Compos. 30, 09673911221094020 (2022). https://doi.org/10.1177/09673911221094020
G. He, X. Chen, Z. Sun, Interface engineering and chemistry of Hf-based high-k dielectrics on III–V substrates. Surf. Sci. Rep. 68(1), 68–107 (2013). https://doi.org/10.1016/j.surfrep.2013.01.002
R.N. Abed, A.R. Abed, F. Ahmed Khamas, M. Abdallh, E. Yousif, High performance thermal coating comprising (CuO: NiO) nanocomposite/C spectrally selective to absorb solar energy. Prog. Color Colorants Coat. 13(4), 275–284 (2020). https://doi.org/10.30509/PCCC.2020.81662
M.H. Al-Mashhadani, H. Thamer, H. Adil, A. Ahmed, D.S. Ahmed, M. Bufaroosha, A.H. Jawad, E. Yousif, Environmental and morphological behavior of polystyrene films containing Schiff base moiety. Mater. Today Proc. 42, 2693–2699 (2021). https://doi.org/10.1016/j.matpr.2020.12.706
S. Dolai, S.N. Sarangi, S. Hussain, R. Bhar, A.K. Pal, Magnetic properties of nanocrystalline nickel incorporated CuO thin films. J. Magn. Magn. Mater. 479, 59–66 (2019). https://doi.org/10.1016/j.jmmm.2019.02.005
A.M. Abdelghany, G. El-Damrawi, A.G. ElShahawy, N.M. Altomy, Structural investigation of PVC/PS polymer blend doped with nanosilica from a renewable. Source 10, 1013–1019 (2018). https://doi.org/10.1007/s12633-017-9564-7
A.S. Hassanien, A.A. Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50− xSex thin films. J. Alloys Compd. 648, 280–290 (2015). https://doi.org/10.1016/j.jallcom.2015.06.231
A.M. Abdelghany, M.S. Meikhail, N. Asker, Synthesis and structural-biological correlation of PVC\PVAc polymer blends. J Mater. Res. Technol. 8(5), 3908–3916 (2019). https://doi.org/10.1016/j.jmrt.2019.06.053
A.S. Hassanien, A.A. Akl, Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Appl. Phys. A 124, 752-1–752-16 (2018). https://doi.org/10.1007/s00339-018-2180-6
C. Yang, H. Fan, Y. Xi, J. Chen, Z. Li, Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation. Appl. Surf. Sci. 254(9), 2685–2689 (2008). https://doi.org/10.1016/j.apsusc.2007.10.006
Q.M. Al-Bataineh, A.M. Alsaad, A.A. Ahmad, A. Al-Sawalmih, Structural, electronic and optical characterization of ZnO thin film-seeded platforms for ZnO nanostructures: sol–gel method versus ab initio calculations. J. Electron. Mater. 48(8), 5028–5038 (2019). https://doi.org/10.1007/s11664-019-07303-6
M.D. Stamate, Dielectric properties of TiO2 thin films deposited by a DC magnetron sputtering system. Thin Solid Films 372, 246–249 (2000). https://doi.org/10.1016/S0040-6090(00)01027-0
D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Int. J. Appl. Phys. B 119, 273–279 (2015). https://doi.org/10.1007/s00340-015-6053-9
P. Sharma, S.C. Katyal, Thickness dependence of optical parameters for Ge–Se–Te thin films. Mater. Lett. 61, 4516–4518 (2007). https://doi.org/10.1016/j.matlet.2007.02.040
K. Sardar, M. Dan, B. Schwenzer, C.N. Rao, A simple single-source precursor route to the nanostructures of AlN, GaN and InN. J. Mater. Chem. 15(22), 2175–2177 (2005). https://doi.org/10.1039/B502887F
A.A. Al-Muntaser, A.M. Abdelghany, E.M. Abdelrazek, A.G. Elshahawy, Enhancement of optical and electrical properties of PVC/PMMA blend films doped with Li4Ti5O12 nanoparticles. J. Mater. Res. Technol. 9(1), 789–797 (2020). https://doi.org/10.1016/j.jmrt.2019.11.019
W. Spitzer, H. Fan, Determination of optical constants and carrier efective mass of semiconductors. Phys Rev 106, 882 (1957). https://doi.org/10.1103/PhysRev.106.882
F. Urbach, The long wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)
J.I. Pankove, Optical processes in semiconductors (Dover Publications Inc., New York, 1975)
A.F. Mansour, S.F. Mansour, M.A. Abdo, Improvement structural and optical properties of ZnO/PVA nanocomposites. IOSR J. Appl. Phys. 7, 60–69 (2015). https://doi.org/10.9790/4861-07226069
R.N. Abed, A.R. Abed, E. Yousif, Carbon surfaces doped with (Co3O4-Cr2O3) nanocomposite for high-temperature photo thermal solar energy conversion via spectrally selective surfaces. Prog. Color Colorants Coatings 14(4), 301–315 (2021). https://doi.org/10.30509/PCCC.2021.166749.1098
A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattice Microst. 89, 153–169 (2016). https://doi.org/10.1016/j.spmi.2015.10.044
A.M. Alsaad, A.A. Ahmad, I.A. Qattan, Q.M. Al-Bataineh, Z. Albataineh, Structural, optoelectrical, linear, and nonlinear optical characterizations of dip-synthesized undoped ZnO and group III elements (B, Al, Ga, and In)-doped ZnO thin films. Crystals 10, 252 (2020). https://doi.org/10.3390/cryst10040252
H.Y. Zahran, I.S. Yahia, F.H. Alamri, Nanostructured pyronin Y thin films as a new organic semiconductor: linear/nonlinear optics, band gap and dielectric properties. Physica B 513, 95–102 (2017). https://doi.org/10.1016/j.physb.2017.02.026
A.N. Abed, R.N. Abed, Characterization effect of copper oxide and cobalt oxide nanocomposite on poly(vinyl chloride) doping process for solar energy applications. Prog. Color Colorants Coat. 15, 235–241 (2022). https://doi.org/10.30509/PCCC.2021.166858.1123
B. Luo, X. Wang, Y. Wang, L. Li, Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A 2, 510–519 (2014). https://doi.org/10.1039/C3TA14107A
O.G. Abdullah, D.R. Saber, Optical absorption of poly-vinyl alcohol films doped with nickel chloride. Appl. Mech. Mater 110–116, 177–182 (2012). https://doi.org/10.4028/www.scientific.net/AMM.110-116.177
K. Rajesh, V. Crasta, N.B. Rithin Kumar, G. Shetty, P.D. Rekha, Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J. Polym. Res. 26(4), 1–10 (2019). https://doi.org/10.1007/s10965-019-1762-0
N. Algethami, A. Rajeh, H.M. Ragab, A.E. Tarabiah, F. Gami, Characterization, optical, and electrical properties of chitosan/polyacrylamide blend doped silver nanoparticles. J. Mater. Sci. Mater. Electron. 33(13), 10645–10656 (2022). https://doi.org/10.1007/s10854-022-08048-5