Organomineralization in Mesoproterozoic giant ooids
Tài liệu tham khảo
Aloisi, 2006, Nucleation of calcium carbonate on bacterial nanoglobules, Geology, 34, 1017, 10.1130/G22986A.1
Altermann, 2008, Accretion, trapping and binding of sediment in Archean stromatolites—morphological expression of the antiquity of life, Space Sci. Rev., 135, 55, 10.1007/s11214-007-9292-1
Andres, 2006, Growth morphologies of modern marine stromatolites: a case study from Highborne Cay, Bahamas, Sediment. Geol., 185, 319, 10.1016/j.sedgeo.2005.12.020
Barale, 2013, The role of microbial activity in the generation of Lower Cretaceous mixed Fe-oxidephosphate ooids from the Provençal Domain, French Maritime Alps, J. Sediment. Res., 83, 196, 10.2110/jsr.2013.15
Bartley, 2004, Marine carbon reservoir, Corg–Ccarb coupling, and the evolution of the Proterozoic carbon cycle, Geology, 32, 129, 10.1130/G19939.1
Bartley, 2000, Lithification and fabric genesis in precipitated stromatolites and associated peritidal carbonates, Mesoproterozoic Billyakh Group, Siberia, vol. 65, 59
Bau, 1996, Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa, Precambr. Res., 79, 37, 10.1016/0301-9268(95)00087-9
Baumgartner, 2006, Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries, Sediment. Geol., 185, 131, 10.1016/j.sedgeo.2005.12.008
Benzerara, 2006, Nanoscale detection of organic signatures in carbonate microbialites, Proc. Natl. Acad. Sci., 103, 9440, 10.1073/pnas.0603255103
Bezouska, 1998, Origin of limestone fluorescence, Appl. Spectrosc., 52, 1606, 10.1366/0003702981943112
Bontognali, 2008, Microbes produce nanobacteria-like structures, avoiding cell entombment, Geology, 36, 663, 10.1130/G24755A.1
Brady, 2010, Photosynthetic isotope biosignatures in laminated micro-stromatolitic and non-laminated nodules associated with modern, freshwater microbialites in Pavilion Lake. B.C., Chem. Geol., 274, 56, 10.1016/j.chemgeo.2010.03.016
Brady, 2014, Autotrophic and heterotrophic associated biosignatures in modern freshwater microbialites over seasonal and spatial gradients, Org. Geochem., 67, 8, 10.1016/j.orggeochem.2013.11.013
Braissant, 2007, Exopolymeric substances of sulfate reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals, Geobiology, 5, 401, 10.1111/j.1472-4669.2007.00117.x
Brehm, 2004, Laboratory cultures of calcifying biomicrospheres generate ooids – a contribution to the origin of oolites, Carnets de Géologie/Notebooks on Geology Maintenon Lett., 3, 1
Brehm, 2006, Biomicrospheres generate ooids in the laboratory, Geomicrobiol. J., 23, 545, 10.1080/01490450600897302
Breitbart, 2009, Metagenomic and stable isotopic analysis of modern freshwater microbialites in Cuatro Ciénegas, Mexico, Environ. Microbiol., 11, 16, 10.1111/j.1462-2920.2008.01725.x
Butterfield, 2000, Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes, Paleobiology, 26, 386, 10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2
Byrne, 1996, Marine chemistry and geochemistry of the lanthanides, vol. 23, 497
Canfield, 1998, A new model for Proterozoic ocean chemistry, Nature, 396, 450, 10.1038/24839
Chafetz, 1986, Marine peloids: a product of bacterially induced precipitation of calcite, J. Sediment. Res., 56, 812
Davies, 1978, The formation of ooids, Sedimentology, 25, 703, 10.1111/j.1365-3091.1978.tb00326.x
de Wet, 2010, Preservation potential of microorganism morphologies in tufas, sinters, and travertines through geologic time, Palaeobiodivers. Palaeoenviron., 90, 139, 10.1007/s12549-010-0027-z
Diaz, 2013, Bacterial community of oolitic carbonate sediments of the Bahamas Archipelago, Mar. Ecol. Prog. Ser., 485, 9, 10.3354/meps10359
Diaz, 2014, Functional gene diversity of oolitic sands from Great Bahama Bank, Geobiology, 12, 231, 10.1111/gbi.12079
Duguid, 2010, Microbes and ooids, J. Sediment. Res., 80, 236, 10.2110/jsr.2010.027
Dupraz, 2004, Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas), Sedimentology, 51, 745, 10.1111/j.1365-3091.2004.00649.x
Dupraz, 2009, Processes of carbonate precipitation in modern microbial mats, Earth Sci. Rev., 96, 141, 10.1016/j.earscirev.2008.10.005
Edgcomb, 2013, Molecular indicators of microbial diversity in oolitic sands of Highborne Cay, Bahamas, Geobiology, 11, 234, 10.1111/gbi.12029
Flügel, 2004
Folk, 2001, Organic matter, putative nannobacteria and the formation of ooids and hardgrounds, Sedimentology, 48, 215, 10.1046/j.1365-3091.2001.00354.x
German, 1990, Application of the Ce anomaly as a paleoredox indicator: the ground rules, Paleoceanography, 5, 823, 10.1029/PA005i005p00823
German, 1991, Redox cycling of rare earth elements in the suboxic zone of the Black Sea, Geochim. Cosmochim. Acta, 55, 3553, 10.1016/0016-7037(91)90055-A
Goyet, 1991, The carbonate system in the Black Sea, Deep Sea Res. Part A. Oceanogr. Res. Pap., 38, S1049, 10.1016/S0198-0149(10)80023-8
Grotzinger, 2000, Precambrian carbonates: evolution of understanding, 179
Grotzinger, 1995, Anomalous carbonate precipitates: is the Precambrian the key to the Permian?, Palaios, 10, 578, 10.2307/3515096
Grotzinger, 1999, Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?, Annu. Rev. Earth Planet. Sci., 27, 313, 10.1146/annurev.earth.27.1.313
Guidry, 2003, Depositional facies and diagenetic alteration in a relict siliceous hot-spring accumulation: examples from Yellowstone National Park, USA, J. Sediment. Res., 73, 806, 10.1306/022803730806
Guo, 1996, Possible microbial effects on stable carbon isotopes in hot-spring travertines, J. Sediment. Res., 66, 468, 10.1306/D4268379-2B26-11D7-8648000102C1865D
Hiscock, 2006, Alkalinity of the anoxic waters in the Western Black Sea, Deep Sea Res. Part II, 53, 1787, 10.1016/j.dsr2.2006.05.020
Hofmann, 2008, Subsurface filamentous fabrics: an evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology, Astrobiology, 8, 87, 10.1089/ast.2007.0130
Javaux, 2001, Morphological and ecological complexity in early eukaryotic ecosystems, Nature, 412, 66, 10.1038/35083562
Kah, 1992, Early Proterozoic (1.9 Ga) thrombolites of the Rocknest Formation, Northwest Territories, Canada, Palaios, 7, 305, 10.2307/3514975
Kahle, 2007, Proposed origin of aragonite Bahaman and some Pleistocene marine ooids involving bacteria, nannobacteria (?), and biofilms, Carbonate Evaporite, 22, 10, 10.1007/BF03175842
Kamber, 2001, The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history, Geochim. Cosmochim. Acta, 65, 2509, 10.1016/S0016-7037(01)00613-5
Knoll, 2006, Eukaryotic organisms in Proterozoic oceans, Philos. Trans. Roy. Soc. B: Biol. Sci., 361, 1023, 10.1098/rstb.2006.1843
Kudryavtsev, 2001, In situ laser-Raman imagery of Precambrian microscopic fossils, Proc. Natl. Acad. Sci., 98, 823, 10.1073/pnas.98.3.823
Lehrmann, 2012, Lower Triassic oolites of the Nanpanjiang Basin, south China: facies architecture, giant ooids, and diagenesis—implications for hydrocarbon reservoirs, AAPG Bull., 96, 1389, 10.1306/01231211148
Li, 2013, Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids (Moyang, South China), Global Planet. Change, 105, 102, 10.1016/j.gloplacha.2011.09.009
Li, 2015, Global oolite deposits across the Permian-Triassic boundary: a synthesis and implications for palaeoceanography immediately after the end-Permian biocrisis, Earth-Sci. Rev., 10.1016/j.earscirev.2014.12.006
Ling, 2013, Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow seawater, Precambr. Res., 225, 110, 10.1016/j.precamres.2011.10.011
Mei, 2012, Giant Induan oolite: a case study from the Lower Triassic Daye Formation in the western Hubei Province, South China, Geosci. Front., 3, 843, 10.1016/j.gsf.2011.11.017
Myrow, 2004, Flat-pebble conglomerate: its multiple origins and relationship to metre-scale depositional cycles, Sedimentology, 51, 973, 10.1111/j.1365-3091.2004.00657.x
Neuweiler, 2003, Fulvic acid-like organic compounds control nucleation of marine calcite under suboxic conditions, Geology, 31, 681, 10.1130/G19775.1
Nothdurft, 2004, Rare earth element geochemistry of Late Devonian reefal carbonates, canning basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones, Geochim. Cosmochim. Acta, 68, 263, 10.1016/S0016-7037(03)00422-8
Olivier, 2006, Rare earth and trace elements of microbialites in Upper Jurassic coral-and sponge-microbialite reefs, Chem. Geol., 230, 105, 10.1016/j.chemgeo.2005.12.002
Pacton, 2010, Structural arrangement of sedimentary organic matter: nanometer-scale spheroids as evidence of a microbial signature in early diagenetic processes, J. Sediment. Res., 80, 919, 10.2110/jsr.2010.082
Pacton, 2012, Going nano: a new step toward understanding the processes governing freshwater ooid formation, Geology, 40, 547, 10.1130/G32846.1
Perri, 2007, Bacterial fossils and microbial dolomite in Triassic stromatolites, Geology, 35, 207, 10.1130/G23354A.1
Perri, 2012, Carbonate organo-mineral micro- and ultrastructures in sub-fossil stromatolites: Marion lake, South Australia, Geobiology, 10, 105, 10.1111/j.1472-4669.2011.00304.x
1983
Planavsky, 2010, Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanisms of deposition, Geochim. Cosmochim. Acta, 74, 6387, 10.1016/j.gca.2010.07.021
Planavsky, 2011, Widespread iron-rich conditions in the mid-Proterozoic ocean, Nature, 477, 448, 10.1038/nature10327
Planavsky, 2014, Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals, Science, 346, 635, 10.1126/science.1258410
Plée, 2008, Unravelling the microbial role in ooid formation – results of an in situ experiment in modern freshwater Lake Geneva in Switzerland, Geobiology, 6, 341, 10.1111/j.1472-4669.2007.00140.x
Plée, 2010, Discriminating the role of photosynthetic and heterotrophic microbes triggering low-Mg calcite precipitation in freshwater biofilms (Lake Geneva, Switzerland), Geomicrobiol. J., 27, 391, 10.1080/01490450903451526
Pruss, 2005, The unusual sedimentary rock record of the Early Triassic: a case study from the southwestern United States, Palaeogeogr. Palaeoclimatol. Palaeoecol., 222, 33, 10.1016/j.palaeo.2005.03.007
Pruss, 2008, Seafloor-precipitated carbonate fans in the Neoproterozoic Rainstorm Member, Johnnie Formation, Death Valley Region, USA, Sediment. Geol., 207, 34, 10.1016/j.sedgeo.2008.03.005
Rankey, 2009, Holocene ooids of Aitutaki Atoll, Cook Islands, South Pacific, Geology, 37, 971, 10.1130/G30332A.1
Riding, 2006, Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition, Geobiology, 4, 299, 10.1111/j.1472-4669.2006.00087.x
Schopf, 2002, Laser-Raman imagery of Earth’s earliest fossils, Nature, 416, 73, 10.1038/416073a
Schopf, 2007, Evidence of Archean life: stromatolites and microfossils, Precambr. Res., 158, 141, 10.1016/j.precamres.2007.04.009
Shi, 2006, Lower Permian oncolites from South China: implications for equatorial sea-level responses to Late Palaeozoic Gondwanan glaciation, J. Asian Earth Sci., 26, 424, 10.1016/j.jseaes.2005.10.009
Shi, 2011, Precambrian geobiology and evolution of the Earth surface systems: co-evolution of early life and environments, 190
Sholkovitz, 1992, The geochemistry of rare earth elements in the seasonally anoxic water column and porewaters of Chesapeake Bay, Geochim. Cosmochim. Acta, 56, 3389, 10.1016/0016-7037(92)90386-W
Simonson, 1993, Carbonate sedimentology of the early Precambrian Hamersley Group of Western Australia, Precambr. Res., 60, 287, 10.1016/0301-9268(93)90052-4
Spadafora, 2010, Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites, Sedimentology, 57, 27, 10.1111/j.1365-3091.2009.01083.x
Summons, 2013, Lipid biomarkers in ooids from different locations and ages: evidence for a common bacterial flora, Geobiology, 11, 420, 10.1111/gbi.12047
Sumner, 2001, Microbial influences on local carbon isotopic ratios and their preservation in carbonate, Astrobiology, 1, 57, 10.1089/153110701750137431
Sumner, 1993, Numerical modeling of ooid size and the problem of Neoproterozoic giant ooids, J. Sediment. Res., 63, 974
Sumner, 1996, Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?, Geology, 24, 119, 10.1130/0091-7613(1996)024<0119:WKOACC>2.3.CO;2
Sumner, 2004, Implications for Neoarchean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani platform, South Africa, Sedimentology, 51, 1273, 10.1111/j.1365-3091.2004.00670.x
Tang, 2011, Redox status of the Mesoproterozoic epeiric sea in North China, J. Palaeogeogr. (Chinese edition), 13, 563
Tang, 2013, Mesoproterozoic biogenic thrombolites from the North China platform, Int. J. Earth Sci., 101, 1
Tang, 2013, Environment controls the Mesoproterozoic thrombolite morphogenesis: a case study from the North China Platform, J. Palaeogeogr., 2, 25
Tang, 2013, Microfabrics in Mesoproterozoic microdigitate stromatolites: evidence of biogenicity and organomineralization at micron and nanometer scales, Palaios, 28, 178, 10.2110/palo.2012.p12-113r
Tang, 2014, Sunspot cycles recorded in Mesoproterozoic carbonate biolaminites, Precambr. Res., 248, 1, 10.1016/j.precamres.2014.04.009
Thompson, 1997, Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton, Limnol. Oceanogr., 42, 133, 10.4319/lo.1997.42.1.0133
Trower, 2010, Sedimentology, diagenesis, and stratigraphic occurrence of giant ooids in the Ediacaran Rainstorm Member, Johnnie Formation, Death Valley region, California, Precambr. Res., 180, 113, 10.1016/j.precamres.2010.03.007
Tucker, 1990
Van Kranendonk, 2003, Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean, Geobiology, 1, 91, 10.1046/j.1472-4669.2003.00014.x
Villar, 2006, Raman spectroscopy in astrobiology, Anal. Bioanal. Chem., 384, 100, 10.1007/s00216-005-0029-2
Visscher, 2005, Microbial mats as bioreactors: populations, processes, and products, Palaeogeogr. Palaeoclimatol. Palaeoecol., 219, 87, 10.1016/j.palaeo.2004.10.016
Visscher, 2000, Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites, Geology, 28, 919, 10.1130/0091-7613(2000)28<919:MOOSRC>2.0.CO;2
Wang, 1985
Webb, 2000, Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy, Geochim. Cosmochim. Acta, 64, 1557, 10.1016/S0016-7037(99)00400-7
Wignall, 1999, Unusual intraclastic limestones in Lower Triassic carbonates and their bearing on the aftermath of the end-Permian mass extinction, Sedimentology, 46, 303, 10.1046/j.1365-3091.1999.00214.x
Woods, 2013, Microbial ooids and cortoids from the Lower Triassic (Spathian) Virgin Limestone, Nevada, USA: evidence for an Early Triassic microbial bloom in shallow depositional environments, Global Planet. Change, 105, 91, 10.1016/j.gloplacha.2012.07.011
Woods, 2014, Assessing Early Triassic paleoceanographic conditions via unusual sedimentary fabrics and features, Earth Sci. Rev., 137, 6, 10.1016/j.earscirev.2013.08.015
Woods, 2008, Anachronistic facies from a drowned Lower Triassic carbonate platform: lower member of the Alwa Formation (Ba′id Exotic), Oman Mountains, Sediment. Geol., 209, 1, 10.1016/j.sedgeo.2008.06.002
Zhang, 2014, Mass-occurrence of oncoids at the Cambrian Series 2–Series 3 transition: implications for microbial resurgence following an Early Cambrian extinction, Gondwana Res.