Organoids: a novel modality in disease modeling

Bio-Design and Manufacturing - Tập 4 Số 4 - Trang 689-716 - 2021
Zahra Heydari1, Farideh Moeinvaziri1, Tarun Agarwal2, Paria Pooyan1, Anastasia Shpichka3, Tapas K. Maiti2, Peter Timashev3, Hossein Baharvand4, Massoud Vosough1
1Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364, Iran
2Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
3World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 19991, Moscow, Russia
4Department of Developmental Biology, University of Science and Culture, Tehran, 14155-4364, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Huch M, Knoblich JA, Lutolf MP et al (2017) The hope and the hype of organoid research. Development (Cambridge, England) 144(6):938–941. https://doi.org/10.1242/dev.150201

Heydari Z, Najimi M, Mirzaei H et al (2020) Tissue engineering in liver regenerative medicine: insights into novel translational technologies. Cells 9(2):304. https://doi.org/10.3390/cells9020304

Lehmann R, Lee CM, Shugart EC et al (2019) Human organoids: a new dimension in cell biology. Mol Biol Cell 30(10):1129–1137. https://doi.org/10.1091/mbc.E19-03-0135

Smith E, Cochrane WJ (1946) Cystic organoid teratoma: (report of a case). Can Med Assoc J 55(2):151–152

Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597. https://doi.org/10.1016/j.cell.2016.05.082

Nobakht Lahrood F, Saheli M, Farzaneh Z et al (2020) Generation of transplantable three-dimensional hepatic-patch to improve the functionality of hepatic cells in vitro and in vivo. Stem Cells Dev 29(5):301–313. https://doi.org/10.1089/scd.2019.0130

Kondo J, Inoue M (2019) Application of cancer organoid model for drug screening and personalized therapy. Cells 8(5):470. https://doi.org/10.3390/cells8050470

Dutta D, Heo I, Clevers H (2017) Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med 23(5):393–410. https://doi.org/10.1016/j.molmed.2017.02.007

Lancaster MA, Huch M (2019) Disease modelling in human organoids. Dis Model Mech 12(7):39347. https://doi.org/10.1016/j.molmed.2017.02.007

Es HA, Montazeri L, Aref AR et al (2018) Personalized cancer medicine: an organoid approach. Trends Biotechnol 36(4):358–371. https://doi.org/10.1016/j.tibtech.2017.12.005

Kim J, Koo B-K, Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21(10):571–584. https://doi.org/10.1038/s41580-020-0259-3

Cañadas I, Barbie DA (2017) Organoid culture: applications in development and cancer. Ex vivo engineering of the tumor microenvironment. Springer, Berlin, pp 41–54. https://doi.org/10.1016/j.cell.2014.08.016

Gao D, Vela I, Sboner A et al (2014) Organoid cultures derived from patients with advanced prostate cancer. Cell 159(1):176–187. https://doi.org/10.1016/j.cell.2014.08.016

van de Wetering M, Francies HE, Francis JM et al (2015) Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161(4):933–945. https://doi.org/10.1016/j.cell.2015.03.053

Fujii M, Shimokawa M, Date S et al (2016) A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18(6):827–838. https://doi.org/10.1016/j.stem.2016.04.003

Weeber F, van de Wetering M, Hoogstraat M et al (2015) Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci USA 112(43):13308–13311. https://doi.org/10.1073/pnas.1516689112

Engel RM, Chan WH, Nickless D et al (2020) Patient-derived colorectal cancer organoids upregulate revival stem cell marker genes following chemotherapeutic treatment. J Clin Med 9(1):128. https://doi.org/10.3390/jcm9010128

Ooft SN, Weeber F, Dijkstra KK et al (2019) Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med 11(513):eaay2574. https://doi.org/10.1126/scitranslmed.aay2574

Li X, Francies HE, Secrier M et al (2018) Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat Commun 9(1):1–13. https://doi.org/10.1038/s41467-018-05190-9

Seidlitz T, Merker SR, Rothe A et al (2019) Human gastric cancer modelling using organoids. Gut 68(2):207–217. https://doi.org/10.1136/gutjnl-2017-314549

Yan HH, Siu HC, Law S et al (2018) A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23(6):882–897. https://doi.org/10.1016/j.stem.2018.09.016

Nanki K, Toshimitsu K, Takano A et al (2018) Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell 174(4):856–869. https://doi.org/10.1016/j.cell.2018.07.027

Jacob F, Salinas RD, Zhang DY et al (2020) A patient-derived glioblastoma organoid model and biobank recapitulates inter-and intra-tumoral heterogeneity. Cell 180(1):188–204. https://doi.org/10.1016/j.cell.2019.11.036

Fusco P, Parisatto B, Rampazzo E et al (2019) Patient-derived organoids (PDOs) as a novel in vitro model for neuroblastoma tumours. BMC Cancer 19(1):1–11. https://doi.org/10.1186/s12885-019-6149-4

Boj SF, Hwang C-I, Baker LA et al (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160(1–2):324–338. https://doi.org/10.1016/j.cell.2014.12.021

Driehuis E, van Hoeck A, Moore K et al (2019) Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc Natl Acad Sci USA 116(52):26580–26590. https://doi.org/10.1073/pnas.1911273116

Seino T, Kawasaki S, Shimokawa M et al (2018) Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 22(3):454–467. https://doi.org/10.1016/j.stem.2017.12.009

Broutier L, Mastrogiovanni G, Verstegen MM et al (2017) Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nat Med 23(12):1424. https://doi.org/10.1038/nm.4438

Sachs N, de Ligt J, Kopper O et al (2018) A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172(1–2):373–386. https://doi.org/10.1016/j.cell.2017.11.010

Lee SH, Hu W, Matulay JT et al (2018) Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173(2):515–528. https://doi.org/10.1016/j.cell.2018.03.017

Boretto M, Maenhoudt N, Luo X et al (2019) Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat Cell Biol 21(8):1041–1051. https://doi.org/10.1038/s41556-019-0360-z

Kim M, Mun H, Sung CO et al (2019) Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun 10(1):1–15. https://doi.org/10.1038/s41467-019-11867-6

Sachs N, Papaspyropoulos A, Zomer-van Ommen DD et al (2019) Long-term expanding human airway organoids for disease modeling. EMBO J 38(4):e100300. https://doi.org/10.15252/embj.2018100300

Vlachogiannis G, Hedayat S, Vatsiou A et al (2018) Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359(6378):920–926. https://doi.org/10.1126/science.aao2774

Li M, Izpisua Belmonte JC (2019) Organoids—preclinical models of human disease. N Engl J Med 380(6):569–579. https://doi.org/10.1056/NEJMra1806175

Shpichka A, Bikmulina P, Peshkova M et al (2020) Engineering a model to study viral infections: bioprinting, microfluidics, and organoids to defeat Coronavirus Disease 2019 (COVID-19). Int J Bioprint 6(4):302. https://doi.org/10.18063/ijb.v6i4.302

Hossein-Khannazer N, Shokoohian B, Shpichka A et al (2021) An update to “novel therapeutic approaches for treatment of COVID-19.” J Mol Med 99(2):303–310. https://doi.org/10.1007/s00109-020-02027-1

Monteil V, Kwon H, Prado P et al (2020) Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181(4):905–913. https://doi.org/10.1016/j.cell.2020.04.004

Zhao B, Ni C, Gao R et al (2020) Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell 11:1–5. https://doi.org/10.1007/s13238-020-00718-6

Duan X, Han Y, Yang L et al (2020) Identification of drugs blocking SARS-CoV-2 infection using human pluripotent stem cell-derived colonic organoids. bioRxiv. https://doi.org/10.1101/2020.05.02.073320

Qi F, Qian S, Zhang S et al (2020) Communications br. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun 526(1):135–140. https://doi.org/10.1016/j.bbrc.2020.03.044

Hossein-Khannazer N, Shokoohian B, Shpichka A et al (2020) Novel therapeutic approaches for treatment of COVID-19. J Mol Med (Berl) 98(6):789–803. https://doi.org/10.1007/s00109-020-01927-6

Zhao Y, Zhao Z, Wang Y et al (2020) Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. Am J Respir Crit Care Med 202(5):756–759. https://doi.org/10.1164/rccm.202001-0179LE

Lamers MM, Beumer J, van der Vaart J et al (2020) SARS-CoV-2 productively infects human gut enterocytes. Science 369:50–54. https://doi.org/10.1126/science.abc1669

Zhang SC, Wernig M, Duncan ID et al (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12):1129–1133. https://doi.org/10.1038/nbt1201-1129

Baharvand H, Mehrjardi NZ, Hatami M et al (2007) Neural differentiation from human embryonic stem cells in a defined adherent culture condition. Int J Dev Biol 51(5):371–378. https://doi.org/10.1387/ijdb.72280hb

Eiraku M, Watanabe K, Matsuo-Takasaki M et al (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3(5):519–532. https://doi.org/10.1016/j.stem.2008.09.002

Mariani J, Simonini MV, Palejev D et al (2012) Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci 109(31):12770–12775. https://doi.org/10.1073/pnas.1202944109

Edri R, Yaffe Y, Ziller MJ et al (2015) Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors. Nat Commun 6:6500. https://doi.org/10.1038/ncomms7500

Shi Y, Kirwan P, Smith J et al (2012) Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 15(3):477. https://doi.org/10.1038/nn.3041

Hatami M, Mehrjardi NZ, Kiani S et al (2009) Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Cytotherapy 11(5):618–630. https://doi.org/10.1080/14653240903005802

Zare-Mehrjardi N, Khorasani MT, Hemmesi K et al (2011) Differentiation of embryonic stem cells into neural cells on 3D poly (D, L-lactic acid) scaffolds versus 2D cultures. Int J Artif Organs 34(10):1012–1023. https://doi.org/10.5301/ijao.5000002

Lancaster MA, Renner M, Martin C-A et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373. https://doi.org/10.1038/nature12517

Gabriel E, Wason A, Ramani A et al (2016) CPAP promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J 35(8):803–819. https://doi.org/10.15252/embj.201593679

Li R, Sun L, Fang A et al (2017) Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein Cell 8(11):823–833. https://doi.org/10.1007/s13238-017-0479-2

Li Y, Muffat J, Omer A et al (2017) Induction of expansion and folding in human cerebral organoids. Cell Stem Cell 20(3):385–396. https://doi.org/10.1016/j.stem.2016.11.017

Mariani J, Coppola G, Zhang P et al (2015) FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162(2):375–390. https://doi.org/10.1016/j.cell.2015.06.034

Wang P, Mokhtari R, Pedrosa E et al (2017) CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism 8(1):11. https://doi.org/10.1186/s13229-017-0124-1

Ye F, Kang E, Yu C et al (2017) DISC1 regulates neurogenesis via modulating kinetochore attachment of Ndel1/Nde1 during mitosis. Neuron 96(5):1041–1054. https://doi.org/10.1016/j.neuron.2017.10.010

Mellios N, Feldman DA, Sheridan SD et al (2018) MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol Psychiatry 23(4):1051–1065. https://doi.org/10.1038/mp.2017.86

Allende ML, Cook EK, Larman BC et al (2018) Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation. J Lipid Res 59(3):550–563. https://doi.org/10.1194/jlr.M081323

Bershteyn M, Nowakowski TJ, Pollen AA et al (2017) Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 20(4):435–449. https://doi.org/10.1016/j.stem.2016.12.007

Iefremova V, Manikakis G, Krefft O et al (2017) An organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to Miller-Dieker syndrome. Cell Rep 19(1):50–59. https://doi.org/10.1016/j.celrep.2017.03.047

Cugola FR, Fernandes IR, Russo FB et al (2016) The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534(7606):267–271. https://doi.org/10.1038/nature18296

Garcez PP, Loiola EC, da Costa RM et al (2016) Zika virus impairs growth in human neurospheres and brain organoids. Science 352(6287):816–818. https://doi.org/10.1126/science.aaf6116

Qian X, Nguyen HN, Song MM et al (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165(5):1238–1254. https://doi.org/10.1016/j.cell.2016.04.032

Dang J, Tiwari SK, Lichinchi G et al (2016) Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19(2):258–265. https://doi.org/10.1016/j.stem.2016.04.014

Janssens S, Schotsaert M, Karnik R et al (2018) Zika virus alters DNA methylation of neural genes in an organoid model of the developing human brain. MSystems 3(1):e00219. https://doi.org/10.1128/mSystems.00219-17

Zhou T, Tan L, Cederquist GY et al (2017) High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell 21(2):274–283. https://doi.org/10.1016/j.stem.2017.06.017

Watanabe M, Buth JE, Vishlaghi N et al (2017) Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep 21(2):517–532. https://doi.org/10.1016/j.celrep.2017.09.047

Sacramento CQ, De Melo GR, De Freitas CS et al (2017) The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Sci Rep 7:40920. https://doi.org/10.1038/srep40920

Xu M, Lee EM, Wen Z et al (2016) Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med 22(10):1101–1107. https://doi.org/10.1038/nm.4184

Li C, Deng Y-Q, Wang S et al (2017) 25-Hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity 46(3):446–456. https://doi.org/10.1016/j.immuni.2017.02.012

Retallack H, Di Lullo E, Arias C et al (2016) Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci 113(50):14408–14413. https://doi.org/10.1073/pnas.1618029113

Nowakowski TJ, Pollen AA, Di Lullo E et al (2016) Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell 18(5):591–596. https://doi.org/10.1016/j.stem.2016.03.012

Wells MF, Salick MR, Wiskow O et al (2016) Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from Zika virus infection. Cell Stem Cell 19(6):703–708. https://doi.org/10.1016/j.stem.2016.11.011

Meertens L, Labeau A, Dejarnac O et al (2017) Axl mediates ZIKA virus entry in human glial cells and modulates innate immune responses. Cell Rep 18(2):324–333. https://doi.org/10.1016/j.celrep.2016.12.045

Di Lullo E, Kriegstein AR (2017) The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci 18(10):573. https://doi.org/10.1038/nrn.2017.107

Raja WK, Mungenast AE, Lin Y-T et al (2016) Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes. PLoS ONE 11(9):e0161969. https://doi.org/10.1371/journal.pone.0161969

Seo J, Kritskiy O, Watson LA et al (2017) Inhibition of p25/Cdk5 attenuates tauopathy in mouse and iPSC models of frontotemporal dementia. J Neurosci 37(41):9917–9924. https://doi.org/10.1523/JNEUROSCI.0621-17.2017

Gonzalez C, Armijo E, Bravo-Alegria J et al (2018) Modeling amyloid beta and tau pathology in human cerebral organoids. Mol Psychiatry 23(12):2363–2374. https://doi.org/10.1038/s41380-018-0229-8

Park J, Wetzel I, Marriott I et al (2018) A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat Neurosci 21(7):941–951. https://doi.org/10.1038/s41593-018-0175-4

Kim H, Park HJ, Choi H et al (2019) Modeling G2019S-LRRK2 sporadic Parkinson’s disease in 3D midbrain organoids. Stem Cell Rep 12(3):518–531. https://doi.org/10.1016/j.stemcr.2019.01.020

Smits LM, Reinhardt L, Reinhardt P et al (2019) Modeling Parkinson’s disease in midbrain-like organoids. NPJ Parkinson’s Dis 5(1):1–8. https://doi.org/10.1038/s41531-019-0078-4

Chlebanowska P, Tejchman A, Sułkowski M et al (2020) Use of 3D organoids as a model to study idiopathic form of Parkinson’s disease. Int J Mol Sci 21(3):694. https://doi.org/10.3390/ijms21030694

Kwak TH, Kang JH, Hali S et al (2020) Generation of homogeneous midbrain organoids with in vivo-like cellular composition facilitates neurotoxin-based Parkinson’s disease modeling. Stem Cells 38(6):727–740. https://doi.org/10.1002/stem.3163

Lim R, Brichta AM (2016) Anatomical and physiological development of the human inner ear. Hear Res 338:9–21. https://doi.org/10.1016/j.heares.2016.02.004

Wu DK, Kelley MW (2012) Molecular mechanisms of inner ear development. Cold Spring Harbor Perspect Biol 4(8):a008409. https://doi.org/10.1101/cshperspect.a008409

Koehler KR, Mikosz AM, Molosh AI et al (2013) Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500(7461):217–221. https://doi.org/10.1038/nature12298

Tang PC, Alex AL, Nie J et al (2019) Defective Tmprss3-Associated hair cell degeneration in inner ear organoids. Stem Cell Rep 13(1):147–162. https://doi.org/10.1016/j.stemcr.2019.05.014

Fligor CM, Langer KB, Sridhar A et al (2018) Three-dimensional retinal organoids facilitate the investigation of retinal ganglion cell development, organization and neurite outgrowth from human pluripotent stem cells. Sci Rep 8(1):1–14. https://doi.org/10.1038/s41598-018-32871-8

Eiraku M, Takata N, Ishibashi H et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472(7341):51–56. https://doi.org/10.1038/nature09941

Nakano T, Ando S, Takata N et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10(6):771–785. https://doi.org/10.1016/j.stem.2012.05.009

Parfitt DA, Lane A, Ramsden CM et al (2016) Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups. Cell Stem Cell 18(6):769–781. https://doi.org/10.1016/j.stem.2016.03.021

Deng W-L, Gao M-L, Lei X-L et al (2018) Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients. Stem Cell Rep 10(4):1267–1281. https://doi.org/10.1016/j.stemcr.2018.02.003

Schwarz N, Lane A, Jovanovic K et al (2017) Arl3 and RP2 regulate the trafficking of ciliary tip kinesins. Hum Mol Genet 26(13):2480–2492. https://doi.org/10.1093/hmg/ddx143

Gao M-L, Lei X-L, Han F et al (2020) Patient-specific retinal organoids recapitulate disease features of late-onset retinitis pigmentosa. Front Cell Dev Biol 8:128. https://doi.org/10.3389/fcell.2020.00128

Kim J-W, Kim Y, Kim J et al (2018) AB0189 3d skin organoid mimicking systemic sclerosis generated by patient-derived induced pluripotent stem cells: ‘disease in a dish’ and development of animal model. BMJ Publishing Group Ltd. https://doi.org/10.1136/annrheumdis-2018-eular.4502

Elias MS, Wright SC, Nicholson WV et al (2019) Functional and proteomic analysis of a full thickness filaggrin-deficient skin organoid model. Wellcome Open Res 4:134. https://doi.org/10.12688/wellcomeopenres.15405.2

Wang G, McCain ML, Yang L et al (2014) Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 20(6):616–623. https://doi.org/10.1038/nm.3545

Hinson JT, Chopra A, Nafissi N et al (2015) HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science (New York, NY) 349(6251):982–986. https://doi.org/10.1126/science.aaa5458

Cashman TJ, Josowitz R, Johnson BV et al (2016) Human engineered cardiac tissues created using induced pluripotent stem cells reveal functional characteristics of BRAF-mediated hypertrophic cardiomyopathy. PLoS ONE 11(1):e0146697. https://doi.org/10.1371/journal.pone.0146697

Hinson JT, Chopra A, Lowe A et al (2016) Integrative analysis of PRKAG2 cardiomyopathy iPS and microtissue models identifies AMPK as a regulator of metabolism, survival, and fibrosis. Cell Rep 17(12):3292–3304. https://doi.org/10.1016/j.celrep.2016.11.066

Voges HK, Mills RJ, Elliott DA et al (2017) Development of a human cardiac organoid injury model reveals innate regenerative potential. Development 144(6):1118–1127. https://doi.org/10.1242/dev.143966

Long C, Li H, Tiburcy M et al (2018) Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci Adv 4(1):eaap9004. https://doi.org/10.1126/sciadv.aap9004

Freedman BS, Brooks CR, Lam AQ et al (2015) Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 6:8715. https://doi.org/10.1038/ncomms9715

Kim YK, Refaeli I, Brooks CR et al (2017) Gene-edited human kidney organoids reveal mechanisms of disease in podocyte development. Stem cells (Dayton, Ohio) 35(12):2366–2378. https://doi.org/10.1002/stem.2707

Cruz NM, Song X, Czerniecki SM et al (2017) Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat Mater 16(11):1112–1119. https://doi.org/10.1038/nmat4994

Hale LJ, Howden SE, Phipson B et al (2018) 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nat Commun 9(1):1–17. https://doi.org/10.1038/s41467-018-07594-z

Low JH, Li P, Chew EGY et al (2019) Generation of human PSC-derived kidney organoids with patterned nephron segments and a de novo vascular network. Cell Stem Cell 25(3):373–387. https://doi.org/10.1016/j.stem.2019.06.009

Tanigawa S, Islam M, Sharmin S et al (2018) Organoids from nephrotic disease-derived iPSCs identify impaired NEPHRIN localization and slit diaphragm formation in kidney podocytes. Stem Cell Rep 11(3):727–740. https://doi.org/10.1016/j.stemcr.2018.08.003

Forbes TA, Howden SE, Lawlor K et al (2018) Patient-iPSC-derived kidney organoids show functional validation of a ciliopathic renal phenotype and reveal underlying pathogenetic mechanisms. Am J Hum Genet 102(5):816–831. https://doi.org/10.1016/j.ajhg.2018.03.014

Hinson JT, Chopra A, Nafissi N et al (2015) Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349(6251):982–986. https://doi.org/10.1126/science.aaa5458

Kim YK, Refaeli I, Brooks CR et al (2017) Gene-edited human kidney organoids reveal mechanisms of disease in podocyte development. Stem Cells 35(12):2366–2378. https://doi.org/10.1002/stem.2707

Monteil V, Kwon H, Prado P et al (2020) Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181:905–913. https://doi.org/10.1016/j.cell.2020.04.004

Miller AJ, Dye BR, Ferrer-Torres D et al (2019) Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc 14(2):518–540. https://doi.org/10.1038/s41596-018-0104-8

McQualter JL, Yuen K, Williams B et al (2010) Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci USA 107(4):1414–1419. https://doi.org/10.1073/pnas.0909207107

Wilkinson DC, Alva-Ornelas JA, Sucre JM et al (2017) Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modelling. Stem Cells Transl Med 6(2):622–633. https://doi.org/10.5966/sctm.2016-0192

Strikoudis A, Cieślak A, Loffredo L et al (2019) Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells. Cell Rep 27(12):3709–3723. https://doi.org/10.1016/j.celrep.2019.05.077

Surolia R, Li FJ, Wang Z et al (2019) Vimentin intermediate filament assembly regulates fibroblast invasion in fibrogenic lung injury. JCI Insight 4(7):e123253. https://doi.org/10.1172/jci.insight.123253

Ramani S, Crawford SE, Blutt SE et al (2018) Human organoid cultures: transformative new tools for human virus studies. Curr Opin Virol 29:79–86. https://doi.org/10.1016/j.coviro.2018.04.001

Heo I, Dutta D, Schaefer DA et al (2018) Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nat Microbiol 3(7):814–823. https://doi.org/10.1038/s41564-018-0177-8

Zhou J, Li C, Sachs N et al (2018) Differentiated human airway organoids to assess infectivity of emerging influenza virus. Proc Natl Acad Sci USA 115(26):6822–6827. https://doi.org/10.1073/pnas.1806308115

Hui KP, Ching RH, Chan SK et al (2018) Tropism, replication competence, and innate immune responses of influenza virus: an analysis of human airway organoids and ex-vivo bronchus cultures. Lancet Respir Med 6(11):846–854. https://doi.org/10.1016/S2213-2600(18)30236-4

Porotto M, Ferren M, Chen Y-W et al (2019) Authentic Modeling of human respiratory virus infection in human pluripotent stem cell-derived lung Organoids. MBio 10(3):e00723-e819. https://doi.org/10.1128/mBio.00723-19

Chen Y-W, Huang SX, De Carvalho ALRT et al (2017) A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol 19(5):542–549. https://doi.org/10.1038/ncb3510

Agarwal T, Subramanian B, Maiti TK (2019) Liver tissue engineering: challenges and opportunities. ACS Biomater Sci Eng 5(9):4167–4182. https://doi.org/10.1021/acsbiomaterials.9b00745

Wu L-J, Chen Z-Y, Wang Y et al (2019) Organoids of liver diseases: From bench to bedside. World J Gastroenterol 25(16):1913. https://doi.org/10.3748/wjg.v25.i16.1913

Heydari Z, Vosough M (2017) New platforms for drug screening and toxicology: necessity or need? Mod Med Lab J 2(1):107–109. https://doi.org/10.30699/mmlj17.1.3.107

Vosough M, Omidinia E, Kadivar M et al (2013) Generation of functional hepatocyte-like cells from human pluripotent stem cells in a scalable suspension culture. Stem Cells Dev 22(20):2693–2705. https://doi.org/10.1089/scd.2013.0088

Sacchi M, Bansal R, Rouwkema J (2020) Bioengineered 3D models to recapitulate tissue fibrosis. Trends Biotechnol 38(6):623–636. https://doi.org/10.1016/j.tibtech.2019.12.010

Leite SB, Roosens T, El Taghdouini A et al (2016) Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials 78:1–10. https://doi.org/10.1016/j.biomaterials.2015.11.026

Coll M, Perea L, Boon R et al (2018) Generation of hepatic stellate cells from human pluripotent stem cells enables in vitro modeling of liver fibrosis. Cell Stem Cell 23(1):101–113. https://doi.org/10.1016/j.stem.2018.05.027

Maepa SW, Ndlovu HJ (2020) Advances in generating liver cells from pluripotent stem cells as a tool for modelling liver diseases. Stem Cells 38:606–612. https://doi.org/10.1002/stem.3154

Kruitwagen HS, Oosterhoff LA, Vernooij IG et al (2017) Long-term adult feline liver organoid cultures for disease modeling of hepatic steatosis. Stem Cell Rep 8(4):822–830. https://doi.org/10.1016/j.stemcr.2017.02.015

Ouchi R, Togo S, Kimura M et al (2019) Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab 30(2):374–384. https://doi.org/10.1016/j.cmet.2019.05.007

Pingitore P, Sasidharan K, Ekstrand M et al (2019) Human multilineage 3D spheroids as a model of liver steatosis and fibrosis. Int J Mol Sci 20(7):1629. https://doi.org/10.3390/ijms20071629

Wang S, Wang X, Tan Z et al (2019) Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Res 29(12):1009–1026. https://doi.org/10.1038/s41422-019-0242-8

Jefferies M, Rauff B, Rashid H et al (2018) Update on global epidemiology of viral hepatitis and preventive strategies. World J Clin Cases 6(13):589–599. https://doi.org/10.12998/wjcc.v6.i13.589

Galle PR, Hagelstein J, Kommerell B et al (1994) In vitro experimental infection of primary human hepatocytes with hepatitis B virus. Gastroenterology 106(3):664–673. https://doi.org/10.1016/0016-5085(94)90700-5

Ruoß M, Vosough M, Königsrainer A et al (2020) Towards improved hepatocyte cultures: progress and limitations. Food Chem Toxicol 138:111188. https://doi.org/10.1016/j.fct.2020.111188

Fu G-B, Huang W-J, Zeng M et al (2019) Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. Cell Res 29(1):8–22. https://doi.org/10.1038/s41422-018-0103-x

Nie Y-Z, Zheng Y-W, Miyakawa K et al (2018) Recapitulation of hepatitis B virus–host interactions in liver organoids from human induced pluripotent stem cells. EBioMedicine 35:114–123. https://doi.org/10.1016/j.ebiom.2018.08.014

Scorza M, Elce A, Zarrilli F et al (2014) Genetic diseases that predispose to early liver cirrhosis. Int J Hepatol 2014:713754. https://doi.org/10.1155/2014/713754

Huch M, Gehart H, Van Boxtel R et al (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160(1–2):299–312. https://doi.org/10.1016/j.cell.2014.11.050

Guan Y, Xu D, Garfin PM et al (2017) Human hepatic organoids for the analysis of human genetic diseases. JCI Insight 2(17):e94954. https://doi.org/10.1172/jci.insight.94954

Ogawa M, Ogawa S, Bear CE et al (2015) Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol 33(8):853. https://doi.org/10.1038/nbt.3294

Hohwieler M, Müller M, Frappart P-O et al (2019) Pancreatic progenitors and organoids as a prerequisite to model pancreatic diseases and cancer. Stem Cells Int 2019:9301382. https://doi.org/10.1155/2019/9301382

Chen L, Magliano DJ, Zimmet PZ (2012) The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 8(4):228–236. https://doi.org/10.1038/nrendo.2011.183

Kim Y, Kim H, Ko UH et al (2016) Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo. Sci Rep 6:35145. https://doi.org/10.1038/srep35145

Cutting GR (2015) Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet 16(1):45–56. https://doi.org/10.1038/nrg3849

Hohwieler M, Illing A, Hermann PC et al (2017) Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut 66(3):473–486. https://doi.org/10.1136/gutjnl-2016-312423

Wen S, Moss SF (2009) Helicobacter pylori virulence factors in gastric carcinogenesis. Cancer Lett 282(1):1–8. https://doi.org/10.1016/j.canlet.2008.11.016

Barker N, Huch M, Kujala P et al (2010) Lgr5+ ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6(1):25–36. https://doi.org/10.1016/j.stem.2009.11.013

McCracken KW, Catá EM, Crawford CM et al (2014) Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516(7531):400–404. https://doi.org/10.1038/nature13863

Bartfeld S, Bayram T, van de Wetering M et al (2015) In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148(1):126–136. https://doi.org/10.1053/j.gastro.2014.09.042

Bertaux-Skeirik N, Feng R, Schumacher MA et al (2015) CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog 11(2):e1004663. https://doi.org/10.1371/journal.ppat.1004663

Wroblewski LE, Piazuelo MB, Chaturvedi R et al (2015) Helicobacter pylori targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut 64(5):720–730. https://doi.org/10.1136/gutjnl-2014-307650

Holokai L, Chakrabarti J, Broda T et al (2019) Increased programmed death-ligand 1 is an early epithelial cell response to Helicobacter pylori infection. PLoS Pathog 15(1):e1007468. https://doi.org/10.1371/journal.ppat.1007468

Sebrell TA, Hashimi M, Sidar B et al (2019) A novel gastric spheroid co-culture model reveals chemokine-dependent recruitment of human dendritic cells to the gastric epithelium. Cell Mol Gastroenterol Hepatol 8(1):157–171. https://doi.org/10.1016/j.jcmgh.2019.02.010

Lancaster MA, Huch MJ (2019) Disease modelling in human organoids. Dis Model Mech 12(7):dmm039347. https://doi.org/10.1242/dmm.039347

Agarwal T, Onesto V, Lamboni L et al (2021) Engineering biomimetic intestinal topological features in 3D tissue models: retrospects and prospects. Bio-Design Manuf 4:1–28. https://doi.org/10.1007/s42242-020-00120-5

Van Der Flier LG, Clevers HJ (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260. https://doi.org/10.1146/annurev.physiol.010908.163145

Ootani A, Li X, Sangiorgi E et al (2009) Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 15(6):701–706. https://doi.org/10.1038/nm.1951

Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265. https://doi.org/10.1038/nature07935

Workman MJ, Mahe MM, Trisno S et al (2017) Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med 23(1):49–59. https://doi.org/10.1038/nm.4233

Almeqdadi M, Mana MD, Roper J et al (2019) Gut organoids: mini-tissues in culture to study intestinal physiology and disease. Am J Physiol Cell Physiol 317(3):C405–C419. https://doi.org/10.1152/ajpcell.00300.2017

Foulke-Abel J, In J, Kovbasnjuk O et al (2014) Human enteroids as an ex-vivo model of host–pathogen interactions in the gastrointestinal tract. Exp Biol Med (Maywood) 239(9):1124–1134. https://doi.org/10.1177/1535370214529398

Forbester JL, Goulding D, Vallier L et al (2015) Interaction of Salmonella enterica serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun 83(7):2926–2934. https://doi.org/10.1128/IAI.00161-15

Karve SS, Pradhan S, Ward DV et al (2017) Intestinal organoids model human responses to infection by commensal and Shiga toxin producing Escherichia coli. PLoS ONE 12(6):e0178966. https://doi.org/10.1371/journal.pone.0178966

Leslie JL, Huang S, Opp JS et al (2015) Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun 83(1):138–145. https://doi.org/10.1128/IAI.02561-14

Engevik MA, Yacyshyn MB, Engevik KA et al (2015) Human Clostridium difficile infection: altered mucus production and composition. Am J Physiol Gastrointest Liver Physiol 308(6):G510–G524. https://doi.org/10.1152/ajpgi.00091.2014

Schwank G, Koo B-K, Sasselli V et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13(6):653–658. https://doi.org/10.1016/j.stem.2013.11.002

Rodansky ES, Johnson LA, Huang S et al (2015) Intestinal organoids: a model of intestinal fibrosis for evaluating anti-fibrotic drugs. Exp Mol Pathol 98(3):346–351. https://doi.org/10.1016/j.yexmp.2015.03.033

Heuckeroth RO (2018) Hirschsprung disease—integrating basic science and clinical medicine to improve outcomes. Nat Rev Gastroenterol Hepatol 15(3):152. https://doi.org/10.1038/nrgastro.2017.149

Takebe T, Sekine K, Enomura M et al (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499(7459):481–484. https://doi.org/10.1038/nature12271

Koike H, Iwasawa K, Ouchi R et al (2019) Modelling human hepato-biliary-pancreatic organogenesis from the foregut–midgut boundary. Nature 574(7776):112–116. https://doi.org/10.1038/s41586-019-1598-0

Agarwal T, Celikkin N, Costantini M et al (2021) Recent advances in chemically defined and tunable hydrogel platforms for organoid culture. Manufacturing, pp 1–34. https://doi.org/10.1007/s42242-021-00126-7

Zhang S, Wan Z, Kamm RD (2021) Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature. Lab Chip 21(3):473–488. https://doi.org/10.1039/d0lc01186j

Yu JJ (2020) Vascularized organoids: a more complete model. Int J Stem Cells 14:127–137. https://doi.org/10.15283/ijsc20143

Homan KA, Gupta N, Kroll KT et al (2019) Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods 16(3):255–262. https://doi.org/10.1038/s41592-019-0325-y

Cakir B, Xiang Y, Tanaka Y et al (2019) Engineering of human brain organoids with a functional vascular-like system. Nat Methods 16(11):1169–1175. https://doi.org/10.1038/s41592-019-0586-5