Hunt, 2010, ChemSusChem, 3, 306, 10.1002/cssc.200900169
Yu, 2008, ChemSusChem, 1, 893, 10.1002/cssc.200800169
Yang, 2008, J. Environ. Sci., 20, 14, 10.1016/S1001-0742(08)60002-9
Markewitz, 2012, Energy Environ. Sci., 5, 7281, 10.1039/c2ee03403d
Lee, 2010, Micron, 41, 273, 10.1016/j.micron.2009.11.012
Zevenhoven, 2011, Greenhouse Gases: Sci. Technol., 1, 48, 10.1002/ghg3.7
R. Zevenhoven and J.Fagerlund, in Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology, Woodhead Publishing, 2010, vol. 2, pp. 433–462
Meylan, 2015, J. CO2 Util., 12, 101, 10.1016/j.jcou.2015.05.003
Omae, 2006, Catal. Today, 115, 33, 10.1016/j.cattod.2006.02.024
M. Aresta , Carbon Dioxide as Chemical Feedstock, Wiley-VCH, 2010
Mikkelsen, 2010, Energy Environ. Sci., 3, 43, 10.1039/B912904A
Maeda, 2014, Catal. Sci. Technol., 4, 1482, 10.1039/c3cy00993a
Yuan, 2017, Curr. Opin. Green Sustain. Chem., 3, 22, 10.1016/j.cogsc.2016.11.006
M. Aresta , Carbon Dioxide Recovery and Utilization, Springer Netherlands, 2013
Aresta, 1997, Energy Convers. Manage., 38, S373, 10.1016/S0196-8904(96)00297-X
G. Centi and S.Perathoner, Green Carbon Dioxide: Advances in CO2 Utilization, Wiley, 2014
Otto, 2015, Energy Environ. Sci., 8, 3283, 10.1039/C5EE02591E
Liu, 2015, Nat. Commun., 6, 5933, 10.1038/ncomms6933
Seo, 2017, Nat. Chem., 9, 453, 10.1038/nchem.2690
Banerjee, 2016, Nature, 531, 215, 10.1038/nature17185
Omae, 2012, Coord. Chem. Rev., 256, 1384, 10.1016/j.ccr.2012.03.017
Rintjema, 2016, Synthesis, 48, 3863, 10.1055/s-0035-1562520
Kemp, 2014, Sci. Prog., 97, 249, 10.3184/003685014X14092298279136
Nakano, 2014, Nat. Chem., 6, 325, 10.1038/nchem.1882
Dove, 2014, Nat. Chem., 6, 276, 10.1038/nchem.1907
Centi, 2009, Catal. Today, 148, 191, 10.1016/j.cattod.2009.07.075
Liu, 2003, Ind. Eng. Chem. Res., 42, 6518, 10.1021/ie020979s
Yang, 2017, Angew. Chem., Int. Ed., 56, 2927, 10.1002/anie.201611474
Cai, 2016, J. Am. Chem. Soc., 138, 14194, 10.1021/jacs.6b08841
Guo, 2016, Angew. Chem., Int. Ed., 55, 11037, 10.1002/anie.201603638
Khan, 2014, Angew. Chem., Int. Ed., 53, 6439, 10.1002/anie.201403754
Azechi, 2013, J. Polym. Sci., Part A: Polym. Chem., 51, 1651, 10.1002/pola.26538
Haba, 2005, Macromolecules, 38, 3562, 10.1021/ma0476745
Kéki, 2004, Macromol. Symp., 215, 141, 10.1002/masy.200451112
Soga, 1977, J. Polym. Sci., Polym. Chem. Ed., 15, 219, 10.1002/pol.1977.170150120
Ubaghs, 2004, Macromol. Chem. Phys., 205, 888, 10.1002/macp.200400025
Acemoglu, 1997, J. Controlled Release, 49, 263, 10.1016/S0168-3659(97)00097-7
Storey, 1991, Polym. Bull., 27, 267, 10.1007/BF00294531
Storey, 1992, Macromolecules, 25, 5369, 10.1021/ma00046a040
Kadokawa, 2002, Macromol. Rapid Commun., 23, 757, 10.1002/1521-3927(20020901)23:13<757::AID-MARC757>3.0.CO;2-0
Tezuka, 2013, Polym. J., 45, 1183, 10.1038/pj.2013.50
Diallo, 2015, Polym. Chem., 6, 1961, 10.1039/C4PY01713G
Guerin, 2015, Polym. Chem., 6, 1972, 10.1039/C4PY01660B
Guerin, 2014, Macromolecules, 47, 4230, 10.1021/ma5009397
Kéki, 2001, Macromolecules, 34, 6850, 10.1021/ma0100302
Ubaghs, 2004, Macromolecules, 37, 6755, 10.1021/ma049668e
Lee, 2000, Macromolecules, 33, 1618, 10.1021/ma9914321
Fukuoka, 2003, Green Chem., 5, 497, 10.1039/B304963A
Blattmann, 2014, Macromol. Rapid Commun., 35, 1238, 10.1002/marc.201400209
Rokicki, 2015, Polym. Adv. Technol., 26, 707, 10.1002/pat.3522
Kathalewar, 2013, RSC Adv., 3, 4110, 10.1039/c2ra21938g
Grignard, 2016, Green Chem., 18, 2206, 10.1039/C5GC02723C
Maisonneuve, 2015, Chem. Rev., 115, 12407, 10.1021/acs.chemrev.5b00355
Gennen, 2016, Eur. Polym. J., 84, 849, 10.1016/j.eurpolymj.2016.07.013
Rix, 2016, Eur. Polym. J., 84, 863, 10.1016/j.eurpolymj.2016.07.006
Lamarzelle, 2016, Polym. Chem., 7, 1439, 10.1039/C5PY01964H
Besse, 2015, Eur. Polym. J., 71, 1, 10.1016/j.eurpolymj.2015.07.020
Annunziata, 2014, Green Chem., 16, 1947, 10.1039/C3GC41821A
Leitsch, 2016, ACS Macro Lett., 5, 424, 10.1021/acsmacrolett.6b00102
Poussard, 2016, Macromolecules, 49, 2162, 10.1021/acs.macromol.5b02467
Sopeña, 2016, Adv. Synth. Catal., 358, 2172, 10.1002/adsc.201600290
Blattmann, 2016, Macromolecules, 49, 742, 10.1021/acs.macromol.5b02560
Blattmann, 2016, Green Chem., 18, 2406, 10.1039/C5GC02563J
Figovsky, 2013, Chem. Chem. Technol., 7, 79, 10.23939/chcht07.01.079
Maisonneuve, 2014, RSC Adv., 4, 25795, 10.1039/C4RA03675A
Maisonneuve, 2014, Polym. Chem., 5, 6142, 10.1039/C4PY00922C
Cornille, 2016, Eur. Polym. J., 84, 404, 10.1016/j.eurpolymj.2016.09.048
Schmidt, 2016, Macromolecules, 49, 7268, 10.1021/acs.macromol.6b01485
Beniah, 2016, Eur. Polym. J., 84, 770, 10.1016/j.eurpolymj.2016.05.031
Fortman, 2015, J. Am. Chem. Soc., 137, 14019, 10.1021/jacs.5b08084
Duval, 2016, J. Polym. Sci., Part A: Polym. Chem., 54, 758, 10.1002/pola.27908
Yuen, 2016, Polym. Chem., 7, 2105, 10.1039/C6PY00264A
Foltran, 2014, Catal. Sci. Technol., 4, 1585, 10.1039/c3cy00955f
Whiteoak, 2012, ChemSusChem, 5, 2032, 10.1002/cssc.201200255
Wang, 2012, Catal. Sci. Technol., 2, 1480, 10.1039/c2cy20103h
Guo, 2009, J. Phys. Chem. A, 113, 6710, 10.1021/jp809471s
Comerford, 2015, Green Chem., 17, 1966, 10.1039/C4GC01719F
North, 2010, Green Chem., 12, 1514, 10.1039/c0gc00065e
Kathalikkattil, 2015, Catal. Surv. Asia, 19, 223, 10.1007/s10563-015-9196-0
Xu, 2015, Green Chem., 17, 108, 10.1039/C4GC01754D
Sun, 2005, J. Organomet. Chem., 690, 3490, 10.1016/j.jorganchem.2005.02.011
Fiorani, 2015, Green Chem., 17, 1375, 10.1039/C4GC01959H
R. Klaewkla , M.Arend and W. F.Hoelderich, A Review of Mass Transfer Controlling the Reaction Rate in Heterogeneous Catalytic Systems, Mass Transfer-Advanced Aspects, ed. H. Nakajima, InTech, 2011, 10.5772/22962, Available from: http://www.intechopen.com/books/mass-transfer-advanced-aspects/a-review-of-mass-transfer-controlling-the-reaction-rate-in-heterogeneous-catalytic-systems
Martín, 2015, ACS Catal., 5, 1353, 10.1021/cs5018997
Kihara, 1993, J. Org. Chem., 58, 6198, 10.1021/jo00075a011
Sun, 2009, Tetrahedron Lett., 50, 423, 10.1016/j.tetlet.2008.11.034
M. North , in New and Future Developments in Catalysis, Elsevier B.V., 2013, pp. 379–413, 10.1016/b978-0-444-53882-6.00014-0
Welton, 2004, Coord. Chem. Rev., 248, 2459, 10.1016/j.ccr.2004.04.015
Peppel, 1958, Ind. Eng. Chem. Res., 50, 767, 10.1021/ie50581a030
North, 2009, Angew. Chem., Int. Ed., 48, 2946, 10.1002/anie.200805451
Caló, 2002, Org. Lett., 4, 2561, 10.1021/ol026189w
Park, 1997, Energy Convers. Manage., 38, S449, 10.1016/S0196-8904(96)00309-3
C. M. Starks , C. L.Liotta and M.Halpern, Phase Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives, 1994
Ju, 2008, J. Ind. Eng. Chem., 14, 157, 10.1016/j.jiec.2007.12.001
Ema, 2015, Catal. Sci. Technol., 5, 2314, 10.1039/C5CY00020C
Song, 2012, Catal. Today, 183, 130, 10.1016/j.cattod.2011.08.042
Takahashi, 2006, Chem. Commun., 1664, 10.1039/b517140g
Galvan, 2014, Asian J. Org. Chem., 3, 504, 10.1002/ajoc.201402044
Aoyagi, 2013, Tetrahedron Lett., 54, 7031, 10.1016/j.tetlet.2013.10.068
Peng, 2001, New J. Chem., 25, 639, 10.1039/b008923k
Jaiswal, 2016, J. CO2 Util., 14, 93, 10.1016/j.jcou.2016.03.005
Kawanami, 2003, Chem. Commun., 896, 10.1039/b212823c
Seki, 2009, J. Phys. Chem. B, 113, 114, 10.1021/jp800424d
Kazarian, 2000, Chem. Commun., 2047, 10.1039/b005514j
Girard, 2014, Green Chem., 16, 2815, 10.1039/C4GC00127C
Xiao, 2014, J. CO2 Util., 6, 1, 10.1016/j.jcou.2014.01.004
Anthofer, 2014, Catal. Sci. Technol., 4, 1749, 10.1039/c3cy01024d
Sun, 2011, ChemSusChem, 4, 502, 10.1002/cssc.201000305
Sun, 2009, Catal. Today, 148, 361, 10.1016/j.cattod.2009.07.070
Jasiak, 2016, J. Chem. Technol. Biotechnol., 91, 2827, 10.1002/jctb.4892
Chen, 2016, J. CO2 Util., 16, 391, 10.1016/j.jcou.2016.10.005
Tharun, 2014, Catal. Commun., 54, 31, 10.1016/j.catcom.2014.05.016
Hajipour, 2015, RSC Adv., 5, 61179, 10.1039/C5RA08488A
Yang, 2010, Adv. Synth. Catal., 352, 2233, 10.1002/adsc.201000239
Wang, 2016, Catal. Sci. Technol., 6, 3872, 10.1039/C5CY01892G
Foltran, 2013, Catal. Sci. Technol., 3, 1046, 10.1039/c2cy20784b
Duan, 2004, Chem. Res. Chin. Univ., 20, 568
Xie, 2005, New J. Chem., 29, 1199, 10.1039/b504822b
Xie, 2006, J. Mol. Catal. A: Chem., 250, 30, 10.1016/j.molcata.2006.01.038
Dou, 2007, Synlett, 2007, 3058, 10.1055/s-2007-992362
Yu, 2012, Green Chem., 14, 209, 10.1039/C1GC16027C
Heldebrant, 2005, J. Org. Chem., 70, 5335, 10.1021/jo0503759
Barbarini, 2003, Tetrahedron Lett., 44, 2931, 10.1016/S0040-4039(03)00424-6
Yu, 2010, J. Phys. Chem. A, 114, 3863, 10.1021/jp906365g
Shen, 2004, Eur. J. Org. Chem., 2004, 3080, 10.1002/ejoc.200400083
Sun, 2014, Green Chem., 16, 3071, 10.1039/c3gc41850b
Liu, 2014, Int. J. Mol. Sci., 15, 9945, 10.3390/ijms15069945
Cho, 2016, J. Ind. Eng. Chem., 44, 210, 10.1016/j.jiec.2016.09.015
Lermontov, 1998, Russ. Chem. Bull., 47, 1405, 10.1007/BF02495578
Shiels, 2007, J. Mol. Catal. A: Chem., 261, 160, 10.1016/j.molcata.2006.08.002
Sankar, 2004, Appl. Catal., A, 276, 217, 10.1016/j.apcata.2004.08.008
Roshan, 2016, Catal. Sci. Technol., 6, 3997, 10.1039/C5CY01902H
Ajitha, 2011, Tetrahedron Lett., 52, 5403, 10.1016/j.tetlet.2011.08.062
Zhou, 2011, Green Chem., 13, 644, 10.1039/c0gc00541j
Kayaki, 2009, Angew. Chem., Int. Ed., 48, 4194, 10.1002/anie.200901399
Desens, 2016, Adv. Synth. Catal., 358, 622, 10.1002/adsc.201500941
Zhou, 2008, J. Org. Chem., 73, 8039, 10.1021/jo801457r
Wang, 2013, J. Am. Chem. Soc., 135, 11996, 10.1021/ja405114e
Wang, 2015, Green Chem., 17, 4009, 10.1039/C5GC00948K
Zhou, 2015, ACS Catal., 5, 6773, 10.1021/acscatal.5b01409
Chatelet, 2013, J. Am. Chem. Soc., 135, 5348, 10.1021/ja402053d
Chatelet, 2014, Catal. Commun., 52, 26, 10.1016/j.catcom.2014.04.004
Chatelet, 2014, Chem. – Eur. J., 20, 8571, 10.1002/chem.201402058
Kozak, 2013, J. Am. Chem. Soc., 135, 18497, 10.1021/ja4079094
Caristi, 1983, Tetrahedron Lett., 24, 2685, 10.1016/S0040-4039(00)87977-0
Ahmad, 2007, Tetrahedron Lett., 48, 915, 10.1016/j.tetlet.2006.12.042
Aresta, 2003, J. Mol. Catal. A: Chem., 204–205, 245, 10.1016/S1381-1169(03)00305-4
Carvalho Rocha, 2016, J. Catal., 333, 29, 10.1016/j.jcat.2015.10.014
Wang, 2014, Chem. Commun., 50, 14813, 10.1039/C4CC06791F
Wang, 2014, Ind. Eng. Chem. Res., 53, 8426, 10.1021/ie501063f
Sun, 2007, J. Phys. Chem. A, 111, 8036, 10.1021/jp073873p
Marmitt, 2015, J. Comput. Chem., 36, 1322, 10.1002/jcc.23930
Ren, 2011, J. Phys. Chem. A, 115, 2258, 10.1021/jp104184v
Alves, 2016, RSC Adv., 6, 36327, 10.1039/C6RA03427F
Li, 2015, Ind. Eng. Chem. Res., 54, 8093, 10.1021/acs.iecr.5b01409
Wang, 2014, RSC Adv., 4, 2360, 10.1039/C3RA45918G
Luo, 2016, Phys. Chem. Chem. Phys., 18, 27951, 10.1039/C6CP05291F
Roshan, 2014, Dalton Trans., 43, 2023, 10.1039/C3DT52830H
Amaral, 2013, Tetrahedron Lett., 54, 5518, 10.1016/j.tetlet.2013.07.152
Büttner, 2015, ChemCatChem, 7, 459, 10.1002/cctc.201402816
Sun, 2008, Tetrahedron Lett., 49, 3588, 10.1016/j.tetlet.2008.04.022
Liu, 2016, J. CO2 Util., 16, 384, 10.1016/j.jcou.2016.10.004
Tsutsumi, 2010, Org. Lett., 12, 5728, 10.1021/ol102539x
Cheng, 2015, Tetrahedron Lett., 56, 1416, 10.1016/j.tetlet.2015.01.174
Büttner, 2015, ChemSusChem, 8, 2655, 10.1002/cssc.201500612
Wei-Li, 2014, Appl. Catal., A, 470, 183, 10.1016/j.apcata.2013.10.060
Liu, 2016, Green Chem., 18, 4611, 10.1039/C6GC01630H
Toda, 2016, ACS Catal., 6, 6906, 10.1021/acscatal.6b02265
Denizalt, 2015, RSC Adv., 5, 45454, 10.1039/C5RA05384F
Wu, 2016, J. Mol. Catal. A: Chem., 418–419, 1
Anthofer, 2015, ChemCatChem, 7, 94, 10.1002/cctc.201402754
Wei-Li, 2013, J. Mol. Catal. A: Chem., 378, 326, 10.1016/j.molcata.2013.06.024
Tharun, 2013, Phys. Chem. Chem. Phys., 15, 9029, 10.1039/c3cp51158h
Zhou, 2008, J. Mol. Catal. A: Chem., 284, 52, 10.1016/j.molcata.2008.01.010
Wang, 2015, Mol. Phys., 113, 3524, 10.1080/00268976.2015.1037804
Feng, 2015, Aust. J. Chem., 68, 1513, 10.1071/CH14720
Xiao, 2014, J. Cleaner Prod., 67, 285, 10.1016/j.jclepro.2013.12.031
Liu, 2015, Phys. Chem. Chem. Phys., 17, 5959, 10.1039/C4CP05464D
Sharma, 2012, Chem. Eng. J., 193–194, 267, 10.1016/j.cej.2012.04.015
Peng, 2013, RSC Adv., 3, 6859, 10.1039/c3ra23189e
Yue, 2014, Catal. Lett., 144, 1313, 10.1007/s10562-014-1241-5
Liu, 2016, Green Chem., 18, 2851, 10.1039/C5GC02605A
Roshan, 2014, Chem. Commun., 50, 13664, 10.1039/C4CC04195J
Qi, 2007, Synlett, 2007, 0255, 10.1055/s-2007-968024
Qi, 2010, Sci. China: Chem., 53, 1566, 10.1007/s11426-010-4019-7
Fukumoto, 2005, J. Am. Chem. Soc., 127, 2398, 10.1021/ja043451i
Fukumoto, 2006, Chem. Commun., 3081, 10.1039/b606613e
Wu, 2010, Lett. Org. Chem., 7, 73, 10.2174/157017810790534039
Roshan, 2014, Catal. Sci. Technol., 4, 963, 10.1039/C3CY00769C
Wang, 2012, Phys. Chem. Chem. Phys., 14, 11021, 10.1039/c2cp41698k
Tharun, 2014, RSC Adv., 4, 41266, 10.1039/C4RA06964A
Zhou, 2010, Cuihua Xuebao, 31, 765
Wong, 2008, ChemSusChem, 1, 67, 10.1002/cssc.200700097
Wong, 2014, Appl. Catal., A, 472, 160, 10.1016/j.apcata.2013.12.027
Della Monica, 2016, ChemSusChem, 9, 3457, 10.1002/cssc.201601154
Liang, 2011, Chem. Commun., 47, 2131, 10.1039/C0CC04829A
Watile, 2012, Catal. Sci. Technol., 2, 1051, 10.1039/c2cy00458e
Rulev, 2017, ChemSusChem, 10, 1152, 10.1002/cssc.201601246
Zhou, 2013, J. Chem. Res., 37, 102, 10.3184/174751913X13571500195988
Wilhelm, 2014, ChemSusChem, 7, 1357, 10.1002/cssc.201301273
Cheng, 2016, Synth. Commun., 46, 497, 10.1080/00397911.2016.1151050
Gennen, 2015, ChemSusChem, 8, 1845, 10.1002/cssc.201500103
Wang, 2016, ACS Catal., 6, 4871, 10.1021/acscatal.6b01422
Hardman-Baldwin, 2014, ChemSusChem, 7, 3275, 10.1002/cssc.201402783
Shen, 2003, Adv. Synth. Catal., 345, 337, 10.1002/adsc.200390035
Huang, 2003, J. Org. Chem., 68, 6705, 10.1021/jo0348221
Alves, 2015, Catal. Sci. Technol., 5, 4636, 10.1039/C5CY00891C
Sopeña, 2015, ChemSusChem, 8, 3248, 10.1002/cssc.201500710
Whiteoak, 2014, Green Chem., 16, 1552, 10.1039/c3gc41919c
Martínez-Rodríguez, 2016, ChemSusChem, 9, 749, 10.1002/cssc.201501463
Kihara, 1992, Macromolecules, 25, 4824, 10.1021/ma00044a053
Kim, 2013, Bull. Korean Chem. Soc., 34, 2286, 10.5012/bkcs.2013.34.8.2286
Tharun, 2013, Green Chem., 15, 1673, 10.1039/c3gc40729b
Wang, 2016, Green Chem., 18, 1229, 10.1039/C5GC02697K
Xiao, 2013, Synth. Commun., 43, 2985, 10.1080/00397911.2012.754471
Werner, 2014, J. CO2 Util., 7, 39, 10.1016/j.jcou.2014.04.002
Werner, 2014, ChemCatChem, 6, 3493, 10.1002/cctc.201402572
Yang, 2014, Catal. Commun., 44, 6, 10.1016/j.catcom.2013.07.025
Saptal, 2017, ChemSusChem, 10, 1145, 10.1002/cssc.201601228
Gong, 2012, Aust. J. Chem., 65, 381, 10.1071/CH11462
Gong, 2012, Bull. Korean Chem. Soc., 33, 1945, 10.5012/bkcs.2012.33.6.1945
Liu, 2016, Catal. Today, 263, 69, 10.1016/j.cattod.2015.08.062
Ramidi, 2011, Chem. Phys. Lett., 512, 273, 10.1016/j.cplett.2011.07.035
Barkakaty, 2010, Green Chem., 12, 42, 10.1039/B916235F
Coulembier, 2015, J. CO2 Util., 10, 7, 10.1016/j.jcou.2015.02.002
Rokicki, 1984, Monatsh. Chem., 115, 205, 10.1007/BF00798411
Kumar, 2014, Ind. Eng. Chem. Res., 53, 541, 10.1021/ie4033439
Kaneko, 2017, ACS Sustainable Chem. Eng., 5, 2836, 10.1021/acssuschemeng.7b00324
Mamone, 2015, Chem. Commun., 51, 12736, 10.1039/C5CC03896K
Mirabaud, 2015, ACS Catal., 5, 6748, 10.1021/acscatal.5b01545
Song, 2008, Green Chem., 10, 1337, 10.1039/b815105a
Shi, 2013, Pure Appl. Chem., 85, 1633, 10.1351/PAC-CON-12-10-09
Sun, 2014, Chem. Commun., 50, 10307, 10.1039/C4CC04891A
Luo, 2015, Carbon, 82, 1, 10.1016/j.carbon.2014.10.004
Lan, 2014, Carbon, 73, 351, 10.1016/j.carbon.2014.02.075
Dimiev, 2013, ACS Nano, 7, 576, 10.1021/nn3047378
Ansari, 2011, Green Chem., 13, 1416, 10.1039/c0gc00951b
Huang, 2013, Appl. Catal., B, 136–137, 269, 10.1016/j.apcatb.2013.01.057
Su, 2014, Catal. Sci. Technol., 4, 1556, 10.1039/c3cy00921a
Xu, 2015, Catal. Sci. Technol., 5, 447, 10.1039/C4CY00770K
Lan, 2016, Carbon, 100, 81, 10.1016/j.carbon.2015.12.098
Roshan, 2013, Appl. Catal., A, 467, 17, 10.1016/j.apcata.2013.07.007
Sun, 2012, Green Chem., 14, 654, 10.1039/c2gc16335g
Besse, 2016, ChemSusChem, 9, 2167, 10.1002/cssc.201600499
Wu, 2013, ChemCatChem, 5, 1328, 10.1002/cctc.201200894
Yang, 2014, Tetrahedron Lett., 55, 3239, 10.1016/j.tetlet.2014.04.033
Yang, 2016, Catal. Sci. Technol., 6, 7773, 10.1039/C6CY01045H
Li, 2016, RSC Adv., 6, 87036, 10.1039/C6RA20174A
Chen, 2017, J. CO2 Util., 18, 156, 10.1016/j.jcou.2017.01.026