Organo-petrographic and pore facets of Permian shale beds of Jharia Basin with implications to shale gas reservoir

Journal of Earth Science - Tập 28 - Trang 897-916 - 2017
Vinod Atmaram Mendhe1, Subhashree Mishra1, Ranjit G. Khangar2, Alka Damodhar Kamble3, Durgesh Kumar1, Atul Kumar Varma4, H. Singh1, Sujeet Kumar1, Mollika Bannerjee5
1CSIR-Central Institute of Mining and Fuel Research, Dhanbad, India
2GSI-Geological Survey of India, Central Region, Nagpur, India
3IIT (ISM)-Department of Chemical Engineering, Indian Institute of Technology (ISM), Dhanbad, India
4IIT (ISM)-Department of Applied Geology, Indian Institute of Technology (ISM), Dhanbad, India
5CSIR - Central Institute of Mining and Fuel Research, Dhanbad, India

Tóm tắt

The shale deposits of Damodar Valley have received great attention since preliminary studies indicate their potential for shale gas. However, fundamental information allied to shale gas reservoir characteristics are still rare in India, as exploration is in the primary stage. In this study, Barakar shale beds of eastern part of Jharia Basin are evaluated for gas reservoir characteristics. It is evident that Barakar shales are carbonaceous, silty, contains sub-angular flecks of quartz and mica, irregular hair-line fractures and showing lithological variations along the bedding planes, signifying terrestrial-fluviatile deposits under reducing environment. The values of TOC varies from 1.21 wt.% to 17.32 wt.%, indicating good source rock potentiality. The vitrinite, liptinite, inertinite and mineral matter ranging from 0.28 vol.% to 12.98 vol.%, 0.17 vol.% to 3.23 vol.%, 0.23 vol.% to 9.05 vol.%, and 74.74 vol.% to 99.10 vol.%, respectively. The ternary facies plot of maceral composition substantiated that Barakar shales are vitrinite rich and placed in the thermal-dry gas prone region. The low values of the surface area determined following different methods point towards low methane storage capacity, this is because of diagenesis and alterations of potash feldspar responsible for pore blocking effect. The pore size distribution signifying the micro to mesoporous nature, while Type II sorption curve with the H2 type of hysteresis pattern, specifies the heterogeneity in pore structure mainly combined-slit and bottle neck pores.

Tài liệu tham khảo

Aisharhan, A. S., Nairn, A. E. M., 2003. Sedimentary Basins and Petroleum Geology of the Middle East. Elsevier, The Netherlands. 944 Brooks, B. T., 1952. Evidence of Catalytic Action in Petroleum Formation. Industrial & Engineering Chemistry, 44(11): 2570–2577. doi:10.1021/ie50515a032 Brown, M. L., 2009. Analytical Trilinear Pressure Transient Model for Multiply Fractured Horizontal Wells in Tight Shale Reservoirs. [Dissertation]: Colorado School of Mines, Golden Brunauer, S., Deming, L. S., Deming, W. E., et al., 1940. On a Theory of the van Der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7): 1723–1732. doi:10.1021/ja01864a025 Brunauer, S., Emmett, P. H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2): 309–319. doi:10.1021/ja01269a023 Bureau of Indian Standard (BIS), 1995. Methods of Test for Coal and Coke (Second Revision of IS: 1350). Part I, Proximate Analysis. Manak Bhawan, 9 Bahadur Shah Zafar Marg, New Delhi. 1–29 Casshyap, S. M., 1970. Sedimentary Cycles and Environment of Deposition of the Barakar Coal Measures of Lower Gondwana, India. SEPM Journal of Sedimentary Research, Vol. 40: 1302–1317. doi:10.1306/74d7218f-2b21-11d7-8648000102c1865d Casshyap, S. M., Tewari, R. C., 1987. Depositional Model and Tectonic Evolution of Gondwana Basins. The Palaeobotanist, 36: 59–66 Chalmers, G. R. L., Bustin, R. M., 2007. The Organic Matter Distribution and Methane Capacity of the Lower Cretaceous Strata of Northeastern British Columbia, Canada. International Journal of Coal Geology, 70(1/2/3): 223–239. doi:10.1016/j.coal.2006.05.001 Chandra, D., 1992. Jharia Coalfield. Geological Society of India, Bangalore. 1–11 Chandra, S. K., 1990. Deposition of Bivalves in Indian Gondwana Coal Measures. Indian Miner., 44(1): 31–44 Chandra, S. K., Betekhtina, O. A., 1990. Bivalves in Indian Gondwana Coal Measures. Indian J. Geol., 62(1): 18–26 Clarkson, C. R., Freeman, M., He, L., et al., 2012. Characterization of Tight Gas Reservoir Pore Structure Using USANS/SANS and Gas Adsorption Analysis. Fuel, 95: 371–385. doi:10.1016/j.fuel.2011.12.010 Claypool, G. E., 1998. Kerogen Conversion in Fractured Shale Petroleum Systems. AAPG Search and Discovery, Article #90937©1998, AAPG Annual Convention and Exhibition. Salt Lake City, Utah Coal India Limited, 1993. Coal Atlas of India. CMPDI, Ranchi Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86: 1921–1938. doi:10.1306/61eeddbe-173e-11d7-8645000102c1865d Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26–31. doi:10.1016/j.coal.2012.08.004 de Boer, J. H., 1958. The Structure and Properties of Porous Materials. Butterworths, London. 68 Durand, B., Alpern, B., Pittion, L. J., et al., 1986. Reflectance of Vitrinite as a Control of Thermal History of Sediments. In: Burrus, J. ed., Thermal Modeling in Sedimentary Basins, Insitut Francais Petrole Research Conferences on Exploration, Carcan, France, June 3–7, 1985. Editions Technip, Paris. 441–473 EIA-Energy Information Administration, USA, 2011. World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States, EIA Website. [2017-09-10] (2014-04). http://www.eia.gov/analysis/studies/worldshalegas [April 2011] EIA-Energy Information Administration, USA, 2012. Annual Energy Review. [2017-09-10]. www.eia.doe.gov Fu, H. J., Tang, D. Z., Xu, T., et al., 2017. Characteristics of Pore Structure and Fractal Dimension of Low-Rank Coal: A Case Study of Lower Jurassic Xishanyao Coal in the Southern Junggar Basin, NW China. Fuel, 193: 254–264. doi:10.13039/501100001809 Grim R. E., 1947. Relation of Clay Mineralogy to Origin and Recovery of Petroleum. AAPG Bulletin, 31: 1491–1499. doi:10.1306/3d933a1f-16b1-11d7-8645000102c1865d Hakimi, M. H., Abdullah, W. H., Sia, S. G., et al., 2013. Organic Geochemical and Petrographic Characteristics of Tertiary Coals in the Northwest Sarawak, Malaysia: Implications for Palaeoenvironmental Conditions and Hydrocarbon Generation Potential. Marine and Petroleum Geology, 48: 31–46. doi:10.1016/j.marpetgeo.2013.07.009 Hardy, P., 2014. Chapter 1: Introduction and Overview: The Role of Shale Gas in Securing Our Energy Future in Fracking. Environmental Science and Technology, Royal Society of Chemistry, Thomas Graham House, Cambridge. 1–45. doi: 10.1039/9781782620556-00001 International Committee for Coal Petrology (ICCP), 1963. International Handbook of Coal Petrography: 2nd Ed. Centre National de la Recherche Scientifique, Paris International Committee for Coal Petrology (ICCP), 1971. International Handbook of Coal Petrography (1st Supplement to 2nd Edition). International Committee for Coal and Organic Petrology, Unpagenated International Committee for Coal Petrology (ICCP), 1973. International Handbook of Coal Petrography. Supplement to 2nd Ed. Centre National Recherche Scientifique, Paris International Committee for Coal Petrology (ICCP), 1993. International Handbook of Coal Petrography. 2nd Ed., 3rd Supplement to 2nd Ed. University of New Castle, England International Committee for Coal Petrology (ICCP), 1995. Vitrinite Classification. ICCP System 1994, Aachen. 1–24 International Committee for Coal Petrology (ICCP), 1998. The New Vitrinite Classification (ICCP System 1994). Fuel, 77: 349–358 International Energy Agency (IEA), 2007. World Energy Outlook—Global Energy Prospects: Impact of Developments in China & India. 1–674. http://www.worldenergyoutlook.org/media/weowebsite/2008-1994/weo_ 2007.pdf IUPAC, 1997. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A.D. McNaught and A. Wilkinson, Blackwell Scientific Publications, Oxford Jacob, K., F. N. I., Ramaswamy, S. K., Rizvi, S. R. A., et al., 1958. Sedimentological Studies in Parts of Jharia and East Bokaro Coalfields. Geological Survey of India, 24A(6): 339–357 Jarvie, D. M., 2012. Shale Resource Systems for Oil and Gas: Part 1—Shale Gas Resource Systems. In: Breyer, J., ed., Shale Reservoirs—Giant Resources for the 21st Century. American Association of Petroleum Geologists Memoir, 97: 69–87 Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475–499. doi:10.1306/12190606068 Kuila, U., Prasad, M., 2013. Specific Surface Area and Pore-Size Distribution in Clays and Shales. Geophysical Prospecting, 61(2): 341–362. doi:10.1111/1365-2478.12028 Kuila, U., Prasad, M., Derkowski, A., et al., 2012. Compositional Controls on Mudrock Pore-Size Distribution: An Example from Nibrara Formation. SPE Annual Technical and Exhibition (October 8–10), San Antonio. http://dx.doi.org/10.2118/160141-MS Labani, M. M., Rezaee, R., Saeedi, A., et al., 2013. Evaluation of Pore Size Spectrum of Gas Shale Reservoirs Using Low Pressure Nitrogen Adsorption, Gas Expansion and Mercury Porosimetry: A Case Study from the Perth and Canning Basins, Western Australia. Journal of Petroleum Science and Engineering, 112: 7–16. doi:10.1016/j.petrol.2013.11.022 Li, A., Ding, W. L., He, J. H., et al., 2016. Investigation of Pore Structure and Fractal Characteristics of Organic-Rich Shale Reservoirs: A Case Study of Lower Cambrian Qiongzhusi Formation in Malong Block of Eastern Yunnan Province, South China. Marine and Petroleum Geology, 70: 46–57. doi:10.13039/501100001809 Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848–861. doi:10.2110/jsr.2009.092 Mani, D., Patil, D. J., Dayal, A. M., et al., 2015. Thermal Maturity, Source Rock Potential and Kinetics of Hydrocarbon Generation in Permian Shales from the Damodar Valley Basin, Eastern India. Marine and Petroleum Geology, 66: 1056–1072. doi:10.1016/j.marpetgeo.2015.08.019 Mastalerz, M., He, L. L., Melnichenko, Y. B., et al., 2012a. Porosity of Coal and Shale: Insights from Gas Adsorption and SANS/USANS Techniques. Energy & Fuels, 26(8): 5109–5120. doi:10.1021/ef300735t Mastalerz, M., Schimmelmann, A., Lis, G. P., et al., 2012b. Influence of Maceral Composition on Geochemical Characteristics of Immature Shale Kerogen: Insight from Density Fraction Analysis. International Journal of Coal Geology, 103: 60–69. doi:10.1016/j.coal.2012.07.011 Mendhe, V. A., Mishra, S., Varma, A. K., et al., 2017a. Gas Reservoir Characteristics of the Lower Gondwana Shales in Raniganj Basin of Eastern India. Journal of Petroleum Science and Engineering, 149: 649–664. doi:10.1016/j.petrol.2016.11.008 Mendhe, V. A., Bannerjee, M., Varma, A. K., et al., 2017b. Fractal and Pore Dispositions of Coal Seams with Significance to Coalbed Methane Plays of East Bokaro, Jharkhand, India. Journal of Natural Gas Science and Engineering, 38: 412–433. doi:10.1016/j.jngse.2016.12.020 Mendhe, V. A., Mishra, S., Bannerjee, M., et al., 2017c. Evaluation of Thermal Maturity, Pore Structure and Behaviour of Gas Transport in Permian Shale Beds of Jharia Basin, Jharkhand. Proceedings of International Conference on NexGen Technologies for Mining and Fuel Industries (NxGnMiFu-2017), New Delhi. 1397–1408 Mendhe, V. A., Mishra, S., Kamble, A. D., et al., 2017d. Geological Controls and Flow Mechanism of Permian Gas Shale Reservoir of Raniganj Basin, West Bengal. Journal of Geosciences Research, 1: 161–172 Mendhe, V. A., Kamble, A. D., Bannerjee, M., et al., 2016. Evaluation of Shale Gas Reservoir in Barakar and Barren Measures Formations of North and South Karanpura Coalfields, Jharkhand. Journal of the Geological Society of India, 88(3): 305–316. doi:10.1007/s12594-016-0493-7 Mendhe, V. A., Mishra, S., Kamble, A. D., et al., 2015a. Shale Gas and Emerging Energy Resource: Prospects in India. The Indian Mining & Engineering Journal, 54(6): 21–31 Mendhe, V. A., Mishra, S., Varma, A. K., et al., 2015b. Coalbed Methane-Produced Water Quality and Its Management Options in Raniganj Basin, West Bengal, India. Applied Water Science, 7(3): 1359–1367. doi:10.1007/s13201-015-0326-7 Meyer, K., Klobes, P., 1999. Comparison between Different Presentations of Pore Size Distribution in Porous Materials. Fresenius’ Journal of Analytical Chemistry, 363(2): 174–178. doi:10.1007/s002160051166 Mishra, S., Mani, D., Kavitha, S., et al., 2014. Organic Matter Characteristics and Gas Generation Potential of the Tertiary Shales from NW Kutch, India. Journal of Petroleum Science and Engineering, 124: 114–121. doi:10.1016/j.petrol.2014.10.019 Mishra, S., Mendhe, V. A., Kamble, A. D., et al., 2016. Prospects of Shale Gas Exploitation in Lower Gondwana of Raniganj Coalfield (West Bengal), India. The Palaeobotanist, 65: 31–46 Montgomery, S. L., Jarvie, D. M., Bowker, K. A., et al., 2005. Mississippian Barnett Shale, Fort Worth Basin, North-Central Texas: Gas-Shale Play with Multi-Trillion Cubic Foot Potential. AAPG Bulletin, 89(2): 155–175. doi:10.1306/09170404042 Moore, D. E., Morrow, C. A., Byerlee, J. D., 1982. Use of Swelling Clays to Reduce Permeability and Its Potential Application to Nuclear Waste Repository Sealing. Geophysical Research Letters, 9(9): 1009–1012. doi:10.1029/gl009i009p01009 Padhy, P. K., Das, S. K., 2013. Shale Oil and Gas Plays: Indian Sedimentary Basins. Geohorizons, 18: 20–25 Passey, Q. R., Bohacs, K. M., Esch, W. L., et al., 2010. From Oil-Prone Source Rock to Gas-Producing Shale Reservoir––Geologic and Petrophysical Characterization of Unconventional Shale-Gas Reservoirs. Society Petroleum Engineers, 2010: 131350 Person, M., Raffensperger, J. P., Ge, S. M., et al., 1996. Basin-Scale Hydrogeologic Modeling. Reviews of Geophysics, 34(1): 61–87. doi:10.1029/95rg03286 Pollastro, R. M., 2007. Total Petroleum System Assessment of Undiscovered Resources in the Giant Barnett Shale Continuous (Unconventional) Gas Accumulation, Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 551–578. doi:10.1306/06200606007 Pophare, A. M., Mendhe, V. A., Varade, A., 2008. Evaluation of Coal Bed Methane Potential of Coal Seams of Sawang Colliery, Jharkhand, India. Journal of Earth System Science, 117(2): 121–132. doi:10.1007/s12040-008-0003-4 Quantachrome, 2014. Characterising Porous Materials and Powders AutosorbiQ and ASiQwin. Gas Sorption System Operating Manual, 2: 199–426 Roshan, H., Al-Yaseri, A. Z., Sarmadivaleh, M., et al., 2016. On Wettability of Shale Rocks. Journal of Colloid and Interface Science, 475: 104–111. doi:10.1016/j.jcis.2016.04.041 Ross, D. J. K., Marc, B. R., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916–927. doi:10.1016/j.marpetgeo.2008.06.004 Rouquerol, F., Rouquerol, J., Sing, K. S. W., 1999. Adsorption by Powders and Porous Solids. Academic Press, London Ruppel, S. C., Loucks, R. G., Gale, J. F. W., 2008. Barnett, Woodford, and Related Mudrock Successions in Texas Cores and Outcrops. A Core Workshop Prepared for the 2008 AAPG/SEPM, Annual Convention, Austin. 82 Schlumberger, M., 2012. China’s Anton Oilfield Eyes More Opportunities with Schlumberger Partnership. Platts Commodity News, 12 July 2012, via Factiva, © 2012 Platts Schmoker, J. W., 1995. Method for Assessing Continuous-Type (Unconventional) Hydrocarbon Accumulations. In: Gautier, D. L., Dolton, G. L., Takahashi, K. I., et al., eds., National Assessment of United States Oil and Gas Resources—Results, Methodology, and Supporting Data. U. S. Geological Survey Digital Data Series, DDS-30 Sen, S., Das, N., Maiti, D., 2016. Facies Analysis and Depositional Model of Late Permian Raniganj Formation: Study from Raniganj Coal Bed Methane Block. Journal of the Geological Society of India, 88(4): 503–516. doi:10.1007/s12594-016-0513-7 Sengupta, N., 1980. A Revision of the Geology of the JCF with Particular Reference to Distribution of Coal Seam: [Dissertation]. ISM, Dhanbad, India Shiver, R., Nelsen, K., Li, E., et al., 2015. Unconventional Shale Reservoir’s Property Estimation through Modeling, Case Studies of Australian Shale. Energy and Power Engineering, 7(3): 71–80. doi:10.4236/epe.2015.73007 Sing, K. S. W., Everett, D. H., Haul, R. A. W., et al., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Applied Chemistry, 57: 603–619 Sing, K., 2001. The Use of Nitrogen Adsorption for the Characterisation of Porous Materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187–188: 3–9. doi:10.1016/s0927-7757(01)00612-4 Singh, H., 2016. A Critical Review of Water Uptake by Shales. Journal of Natural Gas Science and Engineering, 34: 751–766. doi:10.13039/100000015 Taylor, G. H., Teichmuller, M., Davis, A., et al., 1998. Organic Petrology. Gebruder Borntranger, Berlin Tewari, R. C., Casshyap, S. M., 1982. Paleoflow Analysis of Late Paleozoic Gondwana Deposits of Giridih and Adjoining Basins and Paleogeographic Implications. Journal of Geological Society of India, 23(2): 67–79 Tewari, R. C., Casshyap, S. M., 1983. Cyclicity in Early Permian Fluviatile Gondwana Coal Measures: An Example from Giridih and Saharjuri Basins, Bihar, India. Sedimentary Geology, 35(4): 297–312. doi:10.1016/0037-0738(83)90063-5 Tissot, B. P., Welte, D. H., 1978. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Springer-Verlag, New York. 720 USGS, 1986. USGS Research on Energy Resources-Program and Abstracts. V. E. Mckelvey Forum on Mineral and Energy Resources, U.S. Geological Circular, 974 Uysal, I. T., Glikson, M., Golding, S. D., et al., 2004. Hydrothermal Control on Organic Matter Alteration and Illite Precipitation, Mt Isa Basin, Australia. Geofluids, 4(2): 131–142. doi:10.1111/j.1468-8115.2004.00077.x Varma, A. K., Hazra, B., Mendhe, V. A., et al., 2015. Assessment of Organic Richness and Hydrocarbon Generation Potential of Raniganj Basin Shales, West Bengal, India. Marine and Petroleum Geology, 59: 480–490. doi:10.1016/j.marpetgeo.2014.10.003 Varma, A. K., Hazra, B., Samad, S. K., et al., 2014. Methane Sorption Dynamics and Hydrocarbon Generation of Shale Samples from West Bokaro and Raniganj Basins, India. Journal of Natural Gas Science and Engineering, 21: 1138–1147. doi:10.1016/j.jngse.2014.11.011 Wang, L., Torres, A., Xiang, L., et al., 2015. A Technical Review on Shale Gas Production and Unconventional Reservoirs Modeling. Natural Resources, 6(3): 141–151. doi:10.4236/nr.2015.63013 Wang, M., Yang, J. X., Wang, Z. W., et al., 2015. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China. PLOS ONE, 10(8): e0135252. doi:10.1371/journal.pone.0135252 Wei, L., Wang, Y. Z., Mastalerz, M., 2016. Comparative Optical Properties of Macerals and Statistical Evaluation of Mis-Identification of Vitrinite and Solid Bitumen from Early Mature Middle Devonian––Lower Mississippian New Albany Shale: Implications for Thermal Maturity Assessment. International Journal of Coal Geology, 168: 222–236. doi:10.13039/100000015 Wintsch, R. P., Christoffersen, R., Kronenberg, A. K., 1995. Fluid-Rock Reaction Weakening of Fault Zones. Journal of Geophysical Research: Solid Earth, 100(B7): 13021–13032. doi:10.1029/94jb02622 Zhao, P. Q., Ma, H. L., Rasouli, V., et al., 2017. An Improved Model for Estimating the TOC in Shale Formations. Marine and Petroleum Geology, 83: 174–183. doi:10.13039/501100004701