Organization of initial stages of somatic embryogenesis in tissue culture of Citrus sinensis cv. Tarocco at the organismal level

Pleiades Publishing Ltd - Tập 53 - Trang 548-555 - 2006
N. A. Moiseeva1, V. N. Serebryakova1, L. Nardi2, S. Lucretti2, R. G. Butenko1
1Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
2Italian National Agency for New Technologies, Energy and the Environment, Rome, Italy

Tóm tắt

Four-step protocol was established for the in vitro regeneration of Citrus sinensis cv. Tarocco somatic embryos that were morphologically similar to small somatic embryos in vivo. The regeneration procedure comprises a mechanical destruction of embryogenic culture to obtain proembryogenic cell masses (PEMs) (step 1) followed by culturing on three different media (steps 2–4). The approach developed allows in vitro simulating somatic embryogenesis by dividing this process into three partially independent steps: PEM → globular somatic embryo → heart-shaped somatic embryo → somatic embryo with developed cotyledons. The highest frequency of morphogenetic stage transition was 64, 40, and 26%, respectively. It was shown that the first step (PEM → globular embryo) was associated with the formation of heterogeneous population of spherical bodies 50–500 μm in diameter, among which about 40% were somatic embryos at globular stage. The scheme is offered of alternative pathways for the development of spherical bodies in vitro, and interrelations between their sizes and ability to direct morphogenesis are discussed.

Tài liệu tham khảo

Button, J., Kochba, J., and Bornman, C.H., Fine Structure of and Embryoid Development from Embryogenic Ovular Callus of Shamouti Orange (Citrus sinensis Osb.), J. Exp. Bot., 1974, vol. 25, pp. 446–457. Carimi, F., Tortorici, M.C., de Pasquale, F., and Crescimanno, F.G., Somatic Embryogenesis and Plant Regeneration from Undeveloped Ovules and Stigma/Style Explants of Sweet Orange Navel Group (Citrus sinensis (L.) Osb.), Plant Cell, Tissue Organ Cult., 1998, vol. 54, pp. 183–189. Hao, Y.J. and Deng, X.X., Single-Cell-Derived Sibling Lines Are Established as an Experimental System to Assess Chromosome Number Variations in Embryogenic Callus Cultures of Sweet Orange, Plant Cell, Tissue Organ Cult., 2003, vol. 73, pp. 275–280. Kochba, J. and Spiegel-Roy, P., The Effect of Auxins, Cytokinins and Inhibitors on Somatic Embryogenesis in Habituated Ovular Callus of the Shamouti Orange (Citrus sinensis), Z. Pflanzenphysiol., 1977, vol. 81, pp. 331–337. Ben-Hayyim, G. and Neumann, H., Stimulatory Effect of Glycerol on Growth and Somatic Embryogenesis in Citrus Callus Cultures, Z. Pflanzenphysiol., 1985, vol. 110, pp. 331–337. Gavish, H., Vardi, A., and Fluhr, R., Extracellular Proteins and Early Development in Citrus Nucellar Cell Cultures, Physiol. Plant., 1991, vol. 82, pp. 606–616. Dunstan, D.I., Tautorus, T.E., and Thorpe, T.A., Somatic Embryogenesis in Woody Plants, Current Plant Science and Biotechnology in Agriculture, vol. 20, In vitro Embryogenesis in Plants, Thorpe, T.A., Ed., Dordrecht: Kluwer, 1995, pp. 471–516. Guo, W.W., Cheng, Y.J., and Deng, X.X., Regeneration and Molecular Characterization of Intergenetic Somatic Hybrids between Citrus reticulata and Poncitrus trifoliata, Plant Cell Rep., 2002, vol. 20, pp. 829–834. Scarano, M.T., Abbate, L., Ferrante, S., Lucretti, S., and Tusa, N., ISSS-PCR Technic: A Useful Method for Characterizing New Allotetraploid Somatic Hybrids of Mandarin, Plant Cell Rep., 2002, vol. 20, pp. 1162–1166. Guo, W.W., Prasad, D., Cheng, Y.J., Serrano, P., Deng, X.X., and Grosser, J.W., Targeted Hybridization in Citrus: Transfer of Satsuma Cytoplasm to Seedy Cultivars for Potential Seedleness, Plant Cell Rep., 2004, vol. 22, pp. 752–758. Perez-Molphe-Balch, E. and Ochoa-Alejo, N., Regeneration of Transgenic Plants of Mexican Lime from Agrobacterium rhizogenes-Transformed Tissue, Plant Cell Rep., 1998, vol. 17, pp. 591–596. Domingues, A., Guerri, J., Cambra, M., Navarro, L., Moreno, P., and Pena, L., Efficient Production of Transgenic Citrus Plants Expressing the Coat Protein Gene of Citrus tristeza Virus, Plant Cell Rep., 2000, vol. 19, pp. 427–433. Yeung, E.C., Physiological and Biochemical Aspects of Somatic Embryogenesis, Current Plant Science and Biotechnology in Agriculture, vol. 20, In vitro Embryogenesis in Plants, Thorpe, T.A., Ed., Dordrecht: Kluwer, 1995, pp. 205–248. Merkle, S.A., Strategies for Dealing with Limitetions of Somatic Embryogenesis in Harwood Trees, Plant Tissue Cult. Biotechnol., 1995, vol. 1, pp. 112–121. Kaplan, D.R. and Cooke, T.J., Fundamental Concepts in the Embryogenesis of Dicotyledons: A Morphological Interpretation of Embryo Mutants, Plant Cell, 1997, vol. 9, pp. 1903–1919. Arnold, S., Sabata, I., Bozhkov, P., Dyachok, J., and Filonova, L., Developmental Pathways of Somatic Embryogenesis, Plant Cell, Tissue Organ Cult., 2002, vol. 69, pp. 233–249. Fatto del Bosco, S., Nardi, L., and Lucretti, S., La trasformazione genetica negli agrumi: metodi di inserimento di geni esistyemi di analisi e selezione dei prodotti di trasformazione, Frutticoltura, 1999, no. 1, pp. 51–57. Murashige, T. and Tucker, D.P.H., Growth Factor Requirements of Citrus Tissue Culture, Proc. 1st Int. Citrus Symp., Chapman, H.D., Ed., River-side: Int. Soc. Citriculture (ISC), 1969, vol. 3, pp. 1155–1161. Widholm, J.M., The Use of Fluorescein Diacetate and Phenosafranin for Determining Viability of Cultured Plant Cells, Stain Technol., 1972, vol. 47, pp. 189–194. Zaitsev, G.N., Matematicheskaya statistika v eksperimental’noi botanike (Mathematical Statistics in Experimental Botany), Moscow: Nauka, 1984. Soot, R.K. and Kameron, Dzh.U., Citrus Plants, Selektsiya plodovykh rastenii (Breeding of Fruit Plants), Enikeev, Kh.K., Ed., Moscow: Kolos, 1981, pp. 680–722. Koltunow, A.M., Hidaka, T., and Robinson, S.P., Polyembryos in Citrus: Accumulation of Seed Storage Protein in Seeds and in Embryos Cultured In Vitro, Plant Physiol., 1996, vol. 110, pp. 559–609. Pollock, E.G. and Jensen, W.A., Cell Development during Early Embryogenesis in Capsella and Gossypium, Am. J. Bot., 1964, vol. 51, pp. 915–921. Rodkiewisz, V. and Szszuka, E., The Cuticule of Developing Embryo, Embriologiya tsvetkovykh rastenii (Embryology of Flowering Plants), Batygina, T.B., Ed., St. Petersburg: Mir i sem’ya-95, 1997, vol. 2, pp. 573–575. Naumova, T.N., Ultrastructural Aspects of Embryogenesis, Embriologiya tsvetkovykh rastenii. (Embryology of Flowering Plants), Batygina, T.B., Ed., St. Petersburg: Mir i sem’ya-95, 1997, vol. 2, pp. 557–568. Scheibner, H., Diettrich, B., Schulz, U., and Luckner, M., Somatic Embryogenesis of Digitalis lanata: Synchronization of Development and Cardenolide Biosynthesis, Biochem. Physiol. Pflanz., 1989, vol. 184, pp. 311–320. Schultheis, J.R., Cantliffe, D.J., and Chee, R.P., Optimazing Sweet Potato (Ipomea batatas (L.) Lam.) Root and Plantlets Formation by Selection of Proper Embryo Development Stage and Size, and Gel Type for Fluidized Sowing, Plant Cell Rep., 1990, vol. 9, pp. 356–359. Dubois, T., Guedira, M., Dubois, J., and Vasseur, J., Direct Somatic Embryogenesis in Leaves of Cichorium: A Histological and SEM Study of Early Stages, Protoplasma, 1991, vol. 162, pp. 120–127. Merkle, S.A. and Watson-Pauley, B.A., Regeneration of Bigleaf Magnolia by Somatic Embryogenesis, Hort-Science, 1993, vol. 28, pp. 672–673.