Organic small molecule acceptor materials for organic solar cells

eScience - Tập 3 - Trang 100171 - 2023
Xiaojun Li1, Xiaolei Kong1,2, Guangpei Sun1,2, Yongfang Li1,2
1CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China

Tài liệu tham khảo

Victoria, 2021, Solar photovoltaics is ready to power a sustainable future, Joule, 5, 1041, 10.1016/j.joule.2021.03.005 Kan, 2021, Flexible organic solar cells for biomedical devices, Nano Res., 14, 2891, 10.1007/s12274-021-3386-z Liu, 2021, Technical challenges and perspectives for the commercialization of solution-processable solar cells, Adv. Mater. Technol., 6, 2000960, 10.1002/admt.202000960 Ravishankar, 2020, Achieving net zero energy greenhouses by integrating semitransparent organic solar cells, Joule, 4, 490, 10.1016/j.joule.2019.12.018 Li, 2018, Flexible and semitransparent organic solar cells, Adv. Energy Mater., 8, 1701791, 10.1002/aenm.201701791 Liu, 2022, Recent progress in organic solar cells (part II device engineering), Sci. China Chem., 65, 1457, 10.1007/s11426-022-1256-8 Yang, 2021, Large-area flexible organic solar cells, Npj Flex. Electron., 5, 30, 10.1038/s41528-021-00128-6 Traverse, 2017, Emergence of highly transparent photovoltaics for distributed applications, Nat. Energy, 2, 849, 10.1038/s41560-017-0016-9 Chen, 2022, “Reinforced concrete”-like flexible transparent electrode for organic solar cells with high efficiency and mechanical robustness, Sci. China Chem., 65, 1164, 10.1007/s11426-022-1242-9 Yu, 2022, 18.01% Efficiency organic solar cell and 2.53% light utilization efficiency semitransparent organic solar cell enabled by optimizing PM6:Y6 active layer morphology, Sci. China Chem., 65, 1615, 10.1007/s11426-022-1270-5 Li, 2012, Molecular design of photovoltaic materials for polymer solar cells: towards suitable electronic energy levels and broad absorption, Acc. Chem. Res., 45, 723, 10.1021/ar2002446 Yu, 1995, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270, 1789, 10.1126/science.270.5243.1789 He, 2011, Fullerene derivative acceptors for high performance polymer solar cells, Phys. Chem. Chem. Phys., 13, 1970, 10.1039/C0CP01178A Lin, 2015, An electron acceptor challenging fullerenes for efficient polymer solar cells, Adv. Mater., 27, 1170, 10.1002/adma.201404317 Li, 2019, Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors, Nat. Commun., 10, 519, 10.1038/s41467-019-08508-3 Zhang, 2021, Benzotriazole based 2D-conjugated polymer donors for high performance polymer solar cells, Chin. J. Polym. Sci., 39, 1, 10.1007/s10118-020-2496-5 Fan, 2018, Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency, Sci. China Chem., 61, 531, 10.1007/s11426-017-9199-1 Geng, 2019, Nonfullerene acceptor for organic solar cells with chlorination on dithieno[3,2-b:2′,3′-d]pyrrol fused-ring, ACS Energy Lett., 4, 763, 10.1021/acsenergylett.9b00147 Kan, 2017, Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells, Adv. Mater., 30, 1704904, 10.1002/adma.201704904 Bin, 2016, 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor, Nat. Commun., 7, 13651, 10.1038/ncomms13651 Feng, 2017, Thieno[3,2-b]pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics, ACS Appl. Mater. Interfaces, 9, 31985, 10.1021/acsami.7b10995 Wei, 2020, A-DA′D-A non-fullerene acceptors for high performance organic solar cells, Sci. China Chem., 63, 1352, 10.1007/s11426-020-9799-4 Zhu, 2022, Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology, Nat. Mater., 21, 656, 10.1038/s41563-022-01244-y Chen, 2022, Modification on the quinoxaline unit to achieve high open-circuit voltage and morphology optimization for organic solar cells, ACS Energy Lett., 7, 3432, 10.1021/acsenergylett.2c01589 Chong, 2022, Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination, Adv. Mater., 34, 2109516, 10.1002/adma.202109516 He, 2022, Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%, Nat. Commun., 13, 2598, 10.1038/s41467-022-30225-7 Zhang, 2020, Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells, Nat. Commun., 11, 3943, 10.1038/s41467-020-17867-1 Zhang, 2021, Alkyl-chain branching of non-fullerene acceptors flanking conjugated side groups toward highly efficient organic solar cells, Adv. Energy Mater., 11, 2102596, 10.1002/aenm.202102596 Pfuetzner, 2009, Improved bulk heterojunction organic solar cells employing C70 fullerenes, Appl. Phys. Lett., 94, 223307, 10.1063/1.3148664 Hummelen, 1995, Preparation and characterization of fulleroid and methanofullerene derivatives, J. Org. Chem., 60, 532, 10.1021/jo00108a012 Wienk, 2003, Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells, Angew. Chem. Int. Ed., 42, 3371, 10.1002/anie.200351647 Lenes, 2008, Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells, Adv. Mater., 20, 2116, 10.1002/adma.200702438 He, 2010, Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells, J. Am. Chem. Soc., 132, 1377, 10.1021/ja908602j Li, 2013, Fullerene bisadduct acceptor photovoltaic materials for polymer solar cells, Chem. Asian J., 8, 2316, 10.1002/asia.201300600 Zhao, 2010, 6.5% Efficiency of polymer solar cells based on poly(3-hexylthiophene) and Indene-C60 bisadduct by device optimization, Adv. Mater., 22, 4355, 10.1002/adma.201001339 He, 2010, High-yield synthesis and electrochemical and photovoltaic properties of indene-C70 bisadduct, Adv. Funct. Mater., 20, 3383, 10.1002/adfm.201001122 Guo, 2012, High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive, Energy Environ. Sci., 5, 7943, 10.1039/c2ee21481d Zhao, 2016, Efficient organic solar cells processed from hydrocarbon solvents, Nat. Energy, 1, 15027, 10.1038/nenergy.2015.27 Yusoff, 2015, A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%, Energy Environ. Sci., 8, 303, 10.1039/C4EE03048F Zhou, 2015, Polymer homo-tandem solar cells with best efficiency of 11.3%, Adv. Mater., 27, 1767, 10.1002/adma.201404220 Holliday, 2015, A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics, J. Am. Chem. Soc., 137, 898, 10.1021/ja5110602 Zhao, 2017, Molecular optimization enables over 13% efficiency in organic solar cells, J. Am. Chem. Soc., 139, 7148, 10.1021/jacs.7b02677 Yuan, 2019, Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core, Joule, 3, 1140, 10.1016/j.joule.2019.01.004 Li, 2020, Effect of the chlorine substitution position of the end-group on intermolecular interactions and photovoltaic performance of small molecule acceptors, Energy Environ. Sci., 13, 5028, 10.1039/D0EE02251A Li, 2016, A simple small molecule as an acceptor for fullerene-free organic solar cells with efficiency near 8%, J. Mater. Chem. A, 4, 10409, 10.1039/C6TA04358E Qiu, 2017, A new nonfullerene electron acceptor with a ladder type backbone for high-performance organic solar cells, Adv. Mater., 29, 1604964, 10.1002/adma.201604964 Li, 2016, Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells, J. Mater. Chem. A, 4, 5890, 10.1039/C6TA00612D Wang, 2017, Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency, Adv. Mater., 29, 1701308, 10.1002/adma.201701308 Huang, 2018, Highly efficient organic solar cells based on S,N-heteroacene non-fullerene acceptors, Chem. Mater., 30, 5429, 10.1021/acs.chemmater.8b02276 Yuan, 2019, Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics, Nat. Commun., 10, 570, 10.1038/s41467-019-08386-9 Yuan, 2019, Fused benzothiadiazole: a building block for n-type organic acceptor to achieve high-performance organic solar cells, Adv. Mater., 31, 1807577, 10.1002/adma.201807577 Yu, 2020, Tailoring non-fullerene acceptors using selenium incorporated heterocycles for organic solar cells with over 16% efficiency, J. Mater. Chem. A, 8, 23756, 10.1039/D0TA06658C Zhang, 2020, Selenium heterocyclic electron acceptor with small urbach energy for as-cast high-performance organic solar cells, J. Am. Chem. Soc., 142, 18741, 10.1021/jacs.0c08557 Li, 2023, A-DA′D-A type acceptor with benzoselenadiazole A′-unit enables efficient organic solar cells, ACS Energy Lett., 8, 2488, 10.1021/acsenergylett.3c00743 Zhou, 2020, Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation, Adv. Mater., 32, 1906324, 10.1002/adma.201906324 Shi, 2022, Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells, Nat. Commun., 13, 3256, 10.1038/s41467-022-30927-y Zou, 2022, Peripheral halogenation engineering controls molecular stacking to enable highly efficient organic solar cells, Energy Environ. Sci., 15, 3519, 10.1039/D2EE01340A Liang, 2023, Molecular packing and dielectric property optimization through peripheral halogen swapping enables binary organic solar cells with an efficiency of 18.77%, Adv. Funct. Mater., 33, 2301573, 10.1002/adfm.202301573 Chen, 2022, Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension, Sci. China Chem., 65, 65 1362, 10.1007/s11426-022-1264-y Lin, 2020, A non-fullerene acceptor with enhanced intermolecular π-core interaction for high-performance organic solar cells, J. Am. Chem. Soc., 142, 15246, 10.1021/jacs.0c07083 Li, 2021, Medium band-gap non-fullerene acceptors based on a benzothiophene donor moiety enabling high-performance indoor organic photovoltaics, Energy Environ. Sci., 14, 4555, 10.1039/D1EE00687H Lin, 2015, High-performance fullerene-free polymer solar cells with 6.31% efficiency, Energy Environ. Sci., 8, 610, 10.1039/C4EE03424D Yao, 2016, Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells, Adv. Mater., 28, 8283, 10.1002/adma.201602642 Li, 2017, Insertion of double bond π-bridges of A–D–A acceptors for high performance near-infrared polymer solar cells, J. Mater. Chem. A, 5, 22588, 10.1039/C7TA07049G Jia, 2021, High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor, Nat. Commun., 12, 178, 10.1038/s41467-020-20431-6 Mahmood, 2020, Computational analysis to understand the performance difference between two small-molecule acceptors differing in their terminal electron-deficient group, J. Comput. Electron., 19, 931, 10.1007/s10825-020-01494-6 Dai, 2017, Fused nonacyclic electron acceptors for efficient polymer solar cells, J. Am. Chem. Soc., 139, 1336, 10.1021/jacs.6b12755 Li, 2016, Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells, Adv. Mater., 28, 9423, 10.1002/adma.201602776 Cui, 2019, Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications, Nat. Energy, 4, 768, 10.1038/s41560-019-0448-5 Li, 2021, Systematic merging of nonfullerene acceptor π-extension and tetrafluorination strategies affords polymer solar cells with >16% efficiency, J. Am. Chem. Soc., 143, 6123, 10.1021/jacs.1c00211 Li, 2022, Non-fullerene acceptors with direct and indirect hexa-fluorination afford >17% efficiency in polymer solar cells, Energy Environ. Sci., 15, 645, 10.1039/D1EE03225A Han, 2017, Terminal π–π stacking determines three-dimensional molecular packing and isotropic charge transport in an A-π-A electron acceptor for non-fullerene organic solar cells, J. Mater. Chem. C, 5, 4852, 10.1039/C7TC01310H Zheng, 2021, Regulation of molecular orientations of A–D–A nonfullerene acceptors for organic photovoltaics: the role of end-group π–π stacking, Adv. Funct. Mater., 32, 2108551, 10.1002/adfm.202108551 Zhang, 2015, Side-chain engineering of high efficiency conjugated polymer photovoltaic materials, Sci. China Chem., 58, 192, 10.1007/s11426-014-5260-2 Mondelli, 2020, Meta-analysis: the molecular organization of non-fullerene acceptors, Mater. Horiz., 7, 1062, 10.1039/C9MH01439J Lin, 2016, A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency, J. Am. Chem. Soc., 138, 2973, 10.1021/jacs.6b00853 Li, 2019, A simple phenyl group introduced at the tail of alkyl side chains of small molecular acceptors: new strategy to balance the crystallinity of acceptors and miscibility of bulk heterojunction enabling highly efficient organic solar cells, Adv. Mater., 31, 1807832, 10.1002/adma.201807832 Yang, 2016, Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells, J. Am. Chem. Soc., 138, 15011, 10.1021/jacs.6b09110 Zhang, 2018, Conformation locking on fused-ring electron acceptor for high-performance nonfullerene organic solar cells, Adv. Funct. Mater., 28, 1705095, 10.1002/adfm.201705095 Li, 2018, Effects of fused-ring regiochemistry on the properties and photovoltaic performance of n-type organic semiconductor acceptors, J. Mater. Chem. A, 6, 15933, 10.1039/C8TA05920A Li, 2019, Effects of short-axis alkoxy substituents on molecular self-assembly and photovoltaic performance of indacenodithiophene-based acceptors, Adv. Funct. Mater., 30, 1906855, 10.1002/adfm.201906855 Jiang, 2019, Alkyl chain tuning of small molecule acceptors for efficient organic solar cells, Joule, 3, 3020, 10.1016/j.joule.2019.09.010 Dong, 2020, Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%, Joule, 4, 2004, 10.1016/j.joule.2020.07.028 Cui, 2020, Single-junction organic photovoltaic cells with approaching 18% efficiency, Adv. Mater., 32, 1908205, 10.1002/adma.201908205 Li, 2021, Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells, Nat. Energy, 6, 605, 10.1038/s41560-021-00820-x Chen, 2020, Asymmetric alkoxy and alkyl substitution on nonfullerene acceptors enabling high-performance organic solar cells, Adv. Energy Mater., 10, 2003141 Wei, 2022, Effects of oxygen position in the alkoxy substituents on the photovoltaic performance of A-DA′D-A type pentacyclic small molecule acceptors, ACS Energy Lett., 7, 2373, 10.1021/acsenergylett.2c00985 Chai, 2020, Enhanced hindrance from phenyl outer side chains on nonfullerene acceptor enables unprecedented simultaneous enhancement in organic solar cell performances with 16.7% efficiency, Nano Energy, 76, 105087, 10.1016/j.nanoen.2020.105087 Chai, 2021, Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency, Energy Environ. Sci., 14, 3469, 10.1039/D0EE03506H Kong, 2022, The effect of alkyl substitution position of thienyl outer side chains on photovoltaic performance of A–DA′D–A type acceptors, Energy Environ. Sci., 15, 2011, 10.1039/D2EE00430E Kong, 2023, 18.55% efficiency polymer solar cells based on a small molecule acceptor with alkylthienyl outer side chains and a low-cost polymer donor PTQ10, CCS Chem., 5, 841, 10.31635/ccschem.022.202202056 Chen, 2021, High-performance polymer solar cells with efficiency over 18% enabled by asymmetric side chain engineering of non-fullerene acceptors, Sci. China Chem., 64, 1192, 10.1007/s11426-021-1013-0 Li, 2019, Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors, Nat. Commun., 10, 519, 10.1038/s41467-019-08508-3 Fu, 2022, Low-cost synthesis of small molecule acceptors makes polymer solar cells commercially viable, Nat. Commun., 13, 3687, 10.1038/s41467-022-31389-y Liu, 2021, Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics, Nat. Commun., 12, 3049, 10.1038/s41467-021-23389-1 Liu, 2021, Emerging chemistry in enhancing the chemical and photochemical stabilities of fused-ring electron acceptors in organic solar cells, Adv. Funct. Mater., 31, 2106735, 10.1002/adfm.202106735 Li, 2021, Stability: next focus in organic solar cells based on non-fullerene acceptors, Mater. Chem. Front., 5, 2907, 10.1039/D1QM00027F Zhu, 2021, Design of all-fused-ring electron acceptors with high thermal, chemical, and photochemical stability for organic photovoltaics, CCS Chem., 3, 1070, 10.31635/ccschem.021.202100956 Zhang, 2021, Intrinsically chemo- and thermostable electron acceptors for efficient organic solar cells, Bull. Chem. Soc. Jpn., 94, 183, 10.1246/bcsj.20200231 Guo, 2019, Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers, J. Mater. Chem. A, 7, 25088, 10.1039/C9TA09961A Guo, 2021, Photooxidation analysis of two isomeric nonfullerene acceptors: a systematic study of conformational, morphological, and environmental factors, Sol. RRL, 5, 2000704, 10.1002/solr.202000704 Mishra, 2023, Harnessing the structure-performance relationships in designing non-fused ring acceptors for organic solar cells, Angew. Chem. Int. Ed., 62, 202219245, 10.1002/anie.202219245 Liu, 2017, Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells, J. Am. Chem. Soc., 139, 3356, 10.1021/jacs.7b00566 Gao, 2023, Latest progress on fully non-fused electron acceptors for high-performance organic solar cells, Chin. Chem. Lett., 34, 107968, 10.1016/j.cclet.2022.107968 Gao, 2023, Recent progress in non-fused ring electron acceptors for high performance organic solar cells, Ind. Chem. Mater., 1, 60, 10.1039/D2IM00037G Chen, 2020, A fully non-fused ring acceptor with planar backbone and near-IR absorption for high performance polymer solar cells, Angew. Chem. Int. Ed., 59, 22714, 10.1002/anie.202010856 Ma, 2022, Design of a fully non-fused bulk heterojunction toward efficient and low-cost organic photovoltaics, Angew. Chem. Int. Ed., 61, 202214088 Wang, 2021, Simple nonfused ring electron acceptors with 3D network packing structure boosting the efficiency of organic solar cells to 15.44%, Adv. Energy Mater., 11, 2102591, 10.1002/aenm.202102591 Wanga, 2023, A simple nonfused ring electron acceptor with a power conversion efficiency over 16%, Chin. J. Chem., 41, 665, 10.1002/cjoc.202200673 Ma, 2022, Unsymmetrically chlorinated non-fused electron acceptor leads to high-efficiency and stable organic solar cells, Angew. Chem. Int. Ed., 61, 202214931