Organic photovoltaic materials and devices

Comptes Rendus Physique - Tập 3 Số 4 - Trang 523-542
Jean‐Michel Nunzi1,2
1ERT Cellules solaires photovoltaı&#x0308
2ques plastiques, Laboratoire POMA, UMR-CNRS 6136, Université d'Angers, 2, boulevard Lavoisier, 49045 Angers, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

[1] Tang, C.W. Two-layer organic photovoltaic cell, Appl. Phys. Lett., Volume 48 (1986), p. 183

[2] Schön, J.H.; Kloc, Ch.; Batlogg, B. Efficient photovoltaic energy conversion in pentacene-based heterojunctions, Appl. Phys. Lett., Volume 77 (2000), p. 2473

[3] Le Barny, P.; Dentan, V.; Facoetti, H.; Vergnolle, M.; Vériot, G.; Servet, B. C. R. Acad. Sci. Paris Sér. IV, 1 (2000), p. 493

[4] Kalinowski, J. Electroluminescence in organics, J. Phys. D, Volume 32 (1999), p. R179

[5] Simon, J.; André, J.-J. Molecular Semiconductors: Photoelectrical Properties and Solar Cells, Springer, 1985

[6] K. Petritsch, Organic solar cell architectures, PhD thesis, Graz, 2000

[7] Dantas de Morais, T.; Chaput, F.; Boilot, J.-P.; Lahlil, K.; Darracq, B.; Lévy, Y. C. R. Acad. Sci. Paris Sér. IV, 1 (2000), p. 479

[8] Müllen, K.; Wegner, G. Electronic Materials: The Oligomer Approach, Wiley–VCH, Weinheim, 1998

[9] Halim, M.; Pillow, J.N.G.; Samuel, I.D.W.; Burn, P.L. Adv. Mater., 11 (1999), p. 371

[10] Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K. Appl. Phys. Lett., 64 (1994), p. 815

[11] Zhang, Z.L.; Jiang, X.Y.; Xu, S.H.; Nagatomo, T. Organic Electroluminescent Materials and Devices (Miyata, S.; Nalwa, H.S., eds.), Gordon and Breach, Amsterdam, 1997, p. 203

[12] Gautier-Thianche, E.; Sentein, C.; Lorin, A.; Denis, C.; Raimond, P.; Nunzi, J.M. J. Appl. Phys., 83 (1998), p. 4236

[13] Cacialli, F.; Friend, R.H.; Bouche, C.-M.; Le Barny, P.; Facoetti, H.; Soyer, F.; Robin, P. J. Appl. Phys., 83 (1998), p. 2343

[14] Jiang, X.; Register, R.A.; Killeen, K.A.; Thompson, M.E.; Pschenitzka, F.; Sturm, J.C. Chem. Mater., 12 (2000), p. 2542

[15] Seguy, I.; Destruel, P.; Bock, H. An all-columnar bilayer light-emitting diode, Synth. Met., Volume 111–112 (2000), p. 15

[16] Appleyard, S.F.J.; Day, S.R.; Pickford, R.D.; Willis, M.R. J. Mater. Chem., 10 (2000), p. 169

[17] Kim, J.; Chitibabu, K.G.; Cazeca, M.J.; Kim, W.; Kumar, J.; Tripathy, S.K. Optical, and Magnetic Properties of Organic Solid-State Materials V, Materials Research Society Symposium Proceedings, 488, MRS, Boston, 1997, p. 527

[18] Cimrova, V.; Remmers, M.; Neher, D.; Wegner, G. Adv. Mater., 8 (1996), p. 146

[19] Wu, A.; Fujuwara, T.; Jikei, M.; Kakimoto, M.-A.; Imai, Y.; Kubota, T.; Iwamoto, M. Thin Solid. Films, 284-285 (1996), p. 901

[20] Tokuhisa, H.; Era, M.; Tsutsui, T. Appl. Phys. Lett., 72 (1998), p. 2639

[21] Arias-Marin, E.; Arnault, J.C.; Guillon, D.; Maillou, T.; Le Moigne, J.; Geffroy, B.; Nunzi, J.M. Langmuir, 16 (2000), p. 4309

[22] Nuesch, F.; Si-Ahmed, L.; François, B.; Zuppiroli, L. Adv. Mater., 9 (1997), p. 222

[23] Papadimitrakopoulos, F.; Zhang, X.M.; Higginson, K.A. IEEE Proceedings, 4 (1998) no. 1

[24] Wagner, H.J.; Loufty, R.O.; Hsio, C. J. Mater. Sci., 17 (1982), p. 2780

[25] Dentan, V.; Vergnolle, M.; Facoetti, H.; Vériot, G. C. R. Acad. Sci. Paris Sér. IV, 1 (2000), p. 425

[26] Salem, L. The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York, 1966

[27] Moliton, A. Les sources de lumière, traité d'optoélectronique (Goure, J.P., ed.), Hermes, Paris, 2001

[28] Charra, F.; Fichou, D.; Nunzi, J.M.; Pfeffer, N. Chem. Phys. Lett., 192 (1992), p. 566

[29] Nunzi, J.M.; Pfeffer, N.; Charra, F.; Nguyen, T.P.; Tran, V.H. Nonlinear Opt., 10 (1995), p. 273

[30] Kirova, N.; Barzovskii, S.; Bishop, A.R. Synth. Met., 100 (1999), p. 29

[31] Kittel, C. Introduction à la physique de l'état solide, Bordas, Paris, 1972

[32] Cojan, C.; Agrawal, G.P.; Flytzanis, C. Phys. Rev. B, 15 (1977), p. 909

[33] Su, P.W.; Schrieffer, J.R.; Heeger, A.L. Phys. Rev. Lett., 42 (1979), p. 1698

[34] Brédas, J.L.; Chance, R.R.; Silbey, R.; Nicolas, G.; Durand, P. J. Chem. Phys., 77 (1982), p. 371

[35] Leising, G.; Tasch, S.; Graupner, W. Handbook of Conducting Polymers (Skotheim, T.A., ed.), M. Dekker, 1998 (Chapter 30)

[36] Lange, J.; Bässler, H. Phys. Stat. Sol. B, 114 (1982), p. 561

[37] Schön, J.H.; Kloc, C.; Dodabalapur, A.; Batlogg, B. Science, 289 (2000), p. 599

[38] Schott, M. C. R. Acad. Sci. Paris Sér. IV, 1 (2000), p. 381

[39] Emin, D. (Skotheim, T.A., ed.), Handbook of Conducting Polymers, 2, M. Dekker, 1996 (Chapter 26)

[40] Gill, W.D. Photoconductivity and Related Phenomena (Mort, J.; Pai, D.M., eds.), Elsevier, 1976, p. 63

[41] Kepler, R.G.; Beeson, P.M.; Jacobs, S.J.; Anderson, R.A.; Sinclair, M.B.; Valencia, V.S.; Cahill, P.A. Appl. Phys. Lett., 66 (1995), p. 3618

[42] Horowitz, G. Adv. Mater., 10 (1998), p. 365

[43] Blom, P.W.M.; De Jong, M.J.M.; Vleggaar, J.J.M. Appl. Phys. Lett., 68 (1996), p. 3308

[44] Martens, H.C.F.; Huiberts, J.N.; Blom, P.W.M. Appl. Phys. Lett., 77 (2000), p. 1852

[45] Reddecker, M.; Bradley, D.D.C.; Inbasekaran, M.; Woo, E.P. Appl. Phys. Lett., 74 (1999), p. 1400

[46] Scher, H. Photoconductivity and Related Phenomena (Mort, J.; Pai, D.M., eds.), Elsevier, 1976, p. 63

[47] Bussac, M.N.; Zuppiroli, L. Phys. Rev. B, 55 (1997), p. 15587

[48] Schön, J.H.; Kloc, C.; Haddon, R.C.; Batlogg, B. Science, 288 (2000), p. 656

[49] Schön, J.H.; Berg, S.; Kloc, C.; Batlogg, B. Science, 287 (2000), p. 1022

[50] Juska, G.; Arlauskas, K.; Osterbacka, R.; Stubb, H. Synth. Met., 109 (2000), p. 173

[51] Sirringhaus, H.; Brown, P.J.; Friend, R.H.; Nielsen, M.M.; Bechgaard, K.; Langeveld-Voss, B.M.W.; Spiering, A.J.H.; Janssen, R.A.J.; Meijer, E.W. Synth. Met., 111–112 (2000), p. 129

[52] Schön, J.H.; Dodabalapur, A.; Bao, Z.; Kloc, Ch.; Schenker, O.; Batlogg, B. Nature, 410 (2001), p. 189

[53] Malliaras, G.G.; Shen, Y.; Dunlap, D.H.; Murata, H.; Kafafi, Z.H. Appl. Phys. Lett., 79 (2001), p. 2582

[54] Inigo, A.R.; Tan, C.H.; Fann, W.; Huang, Y.-S.; Perng, G.-Y.; Chen, S.-A. Adv. Mater., 13 (2001), p. 504

[55] Sentein, C.; Fiorini, C.; Lorin, A.; Nunzi, J.M. Adv. Mater., 9 (1997), p. 809

[56] Murata, H.; Malliaras, G.G.; Uchida, M.; Shen, Y.; Kafafi, Z.H. Chem. Phys. Lett., 339 (2001), p. 161

[57] Kageyama, H.; Ohnishi, K.; Nomura, S.; Shirota, Y. Chem. Phys. Lett., 277 (1997), p. 137

[58] Turro, J. Modern Molecular Photochemistry, University Science Books, Mill Valley, CA, 1991

[59] Mitschke, U.; Bäuerle, P. J. Mater. Chem., 10 (2000), p. 1471

[60] Martin, R.E.; Geneste, F.; Holmes, A.B. C. R. Acad. Sci. Paris Sér. IV, 1 (2000), p. 447

[61] Roncali, J. Chem. Rev., 97 (1997), p. 173

[62] Les Composants Electroniques Organiques, États-Unis Microélectronique 24 (2001)

[63] Godovsky, D.; Chen, L.; Pettersson, L.; Inganas, O.; Andersson, M.R.; Hummelen, J.C. The use of combinatorial materials development for polymer solar cells, Adv. Mater. Opt. Electron., Volume 10 (2000), p. 47

[64] Sariciftci, N.S. Polymeric photovoltaic materials, Current Opinion Solid State Mater. Sci., Volume 4 (1999), p. 373

[65] Law, K.Y. Organic photoconductive materials: recent trends and developments, Chem. Rev., Volume 93 (1993), p. 449

[66] Chamberlain, G.A. Organic solar cells: a review, Solar Cells, Volume 8 (1983), p. 47

[67] L. Sicot, Étude et réalisation de cellules photovoltaïques en polymère, PhD thesis, Orsay, 1999

[68] Rostalski, J.; Meissner, D. Monochromatic versus solar efficiencies of organic solar cells, Solar Energy Mater. Solar Cells, Volume 61 (2000), p. 87

[69] Sze, S.M. Physics of Semiconductor Devices, Wiley, 1981

[70] Ricaud, A. Photopiles solaires, Presses polytechniques et universitaires romandes, 1997

[71] Tsuzuki, T.; Shirota, Y.; Rostalski, J.; Meissner, D. The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment, Solar Energy Mater. Solar Cells, Volume 61 (2000), p. 1

[72] Fromherz, T.; Padinger, F.; Gebeyehu, D.; Brabec, C.; Hummelen, J.C.; Sariciftci, N.S. Comparison of photovoltaic devices containing various blends of polymer and fullerene derivatives, Solar Energy Mater. Solar Cells, Volume 63 (2000), p. 61

[73] Schmidt-Mende, L.; Fechtenkötter, A.; Müllen, K.; Moons, E.; Friend, R.H.; MacKenzie, J.D. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics, Science, Volume 293 (2001), p. 1119

[74] Stuebinger, T.; Bruetting, W. Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells, J. Appl. Phys., Volume 90 (2001), p. 3623

[75] Peumans, P.; Forrest, S.R. Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Appl. Phys. Lett., Volume 79 (2001), p. 126

[76] Pope, M.; Swenberg, E. Electronic Processes in Organic Crystals, Clarendon Press, Oxford, 1982

[77] Wöhrle, D.; Meissner, D. Adv. Mater., 3 (1991), p. 129

[78] Granstrom, M.; Petritsch, K.; Arias, A.C.; Lux, A.; Andersson, M.R.; Friend, R.H. Laminated fabrication of polymeric photovoltaic diodes, Nature, Volume 395 (1998), p. 257

[79] Meissner, D. Plastic solar cell, Photon, Volume 2 (1999)

[80] Rostalski, J.; Meissner, D. Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells, Solar Energy Mater. Solar Cells, Volume 63 (2000), p. 37

[81] Schön, J.H.; Kloc, Ch.; Bucher, E.; Batlogg, B. Efficient organic photovoltaic diodes based on doped pentacene, Nature, Volume 403 (2000), p. 408

[82] Sicot, L.; Geffroy, B.; Lorin, A.; Raimond, P.; Sentein, C.; Nunzi, J.-M. Photovoltaic properties of Schottky and p–n type solar cells based on polythiophene, J. Appl. Phys., Volume 90 (2001), p. 1047

[83] Pfeiffer, M.; Beyer, A.; Fritz, T.; Leo, K. Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study, Appl. Phys. Lett., Volume 73 (1998), p. 3202

[84] Seguy, I.; Mamy, R.; Destruel, P.; Jolinat, P.; Bock, H. Photoemission study of the ITO/triphenylene/perylene/Al interfaces, Appl. Surf. Sci., Volume 174 (2001), p. 310

[85] Liu, S.-G.; Sui, G.; Cormier, R.A.; Leblanc, R.M.; Gregg, B.A. Self-organizing liquid crystal perylene diimide thin films: spectroscopy, crystallinity, and molecular orientation, J. Phys. Chem. B, Volume 106 (2002), p. 1307

[86] Attias, A.-J.; Cavalli, C.; Donnio, B.; Guillon, D.; Hapiot, P.; Malthête, J. Columnar mesophase from a new disclike mesogen based on a 3,5-dicyano-2,4,6-tristyrylpyridine core, Chem. Mater., Volume 14 (2002), p. 375

[87] O'Regan, B.; Grätzel, M. Nature, 353 (1991), p. 737

[88] Sariciftci, N.S.; Smilowitz, L.; Heeger, A.J.; Wudl, F. Science, 258 (1992), p. 1474

[89] Brabec, C.J.; Sariciftci, N.S.; Hummelen, J.C. Plastic solar cells, Adv. Funct. Mater., Volume 11 (2001), p. 15

[90] Liu, J.; Shi, Y.; Yang, Y. Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices, Adv. Funct. Mater., Volume 11 (2001), p. 420

[91] Eckert, J.-F.; Nicoud, J.-F.; Nierengarten, J.-F.; Liu, S.-G.; Echegoyen, L.; Barigelletti, F.; Armaroli, N.; Ouali, L.; Krasnikov, V.; Hadziioannou, G. Fullerene – Oligophenylenevinylene hybrids: synthesis, electronic properties, and incorporation in photovoltaic devices, J. Am. Chem. Soc., Volume 122 (2000), p. 7467

[92] Angeles Herranz, M.; Martin, N. A new building block for diels-alder reactions in p-extended tetrathiafulvalenes: synthesis of a novel electroactive C60-based dyad, Organ. Lett., Volume 1 (1999), p. 2005

[93] Neugebauer, H.; Brabec, C.; Hummelen, J.C.; Sariciftci, N.S. Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells, Solar Energy Mater. Solar Cells, Volume 61 (2000), p. 35

[94] Miller, J.S. Interpenetrating lattices – materials of the future, Adv. Mater., Volume 13 (2001), p. 525

[95] Arango, A.C.; Johnson, L.R.; Bliznyuk, V.N.; Schlesinger, Z.; Carter, S.A.; Hörhold, H.-H. Efficient titanium oxide/conjugated polymer photovoltaics for solar energy conversion, Adv. Mater., Volume 12 (2000), p. 1689

[96] Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A.P. Shape control of CdSe nanocrystals, Nature, Volume 404 (2000), p. 59

[97] Huynh, W.U.; Dittmer, J.J.; Alivisatos, A.P. Hybrid nanorod–polymer solar cells, Science, Volume 295 (2002), p. 2425

[98] C. Sentein, C. Fiorini, A. Lorin, J.M. Nunzi, Dispositif semiconducteur en polymère comportant au moins une fonction redresseuse et procédé de fabrication d'un tel dispositif, European Patent, 1997

[99] Sentein, C.; Fiorini, C.; Lorin, A.; Sicot, L.; Nunzi, J.-M. Study of orientation induced molecular rectification in polymer films, Opt. Mater., Volume 9 (1998), p. 316

[100] Sicot, L.; Fiorini, C.; Lorin, A.; Raimond, P.; Sentein, C.; Nunzi, J.-M. Improvement of the photovoltaic properties of polythiophene-based cells, Solar Energy Mater. Solar Cells, Volume 63 (2000), p. 49

[101] Sentein, C.; Fiorini, C.; Lorin, A.; Nunzi, J.M.; Raimond, P.; Sicot, L. Poling induced improvement of organic-polymer device efficiency, Synth. Met., Volume 102 (1999), pp. 989-990

[102] Nunzi, J.-M.; Sentein, C.; Fiorini, C.; Lorin, A.; Raimond, P. Oriented polymer photovoltaic cells, SPIE Proc., 4108, 2001, p. 41

[103] Yahiro, M.; Zou, D.; Tsutsui, T. Recoverable degradation phenomena of quantum efficiency in organic EL devices, Synth. Met., Volume 111–112 (2000), p. 245

[104] Kroon, J.M.; Wienk, M.M.; Verhees, W.J.H.; Hummelen, J.C. Accurate efficiency determination and stability studies of conjugated polymer/fullerene solar cells, Thin Solid Films, Volume 403–404 (2002), p. 223

[105] Gautier, E.; Lorin, A.; Nunzi, J.M.; Schalchli, A.; Benattar, J.J.; Vital, D. Electrode interface effects on ITO/polymer/metal light emitting diodes, Appl. Phys. Lett., Volume 69 (1996), p. 1071

[106] Goetzberger, A.; Hebling, C. Photovoltaic materials, past, present, future, Solar Energy Mat. Solar Cells, Volume 62 (2000), p. 1