Organic carbon modified Fe3O4/schwertmannite for heterogeneous Fenton reaction featuring synergistic in-situ H2O2 generation and activation

Separation and Purification Technology - Tập 276 - Trang 119344 - 2021
Ting Li1, Zikai Wang1, Zexin Zhang1, Kun Feng1, Jianru Liang1, Dianzhan Wang1, Lixiang Zhou1
1College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China

Tài liệu tham khảo

An, 2019, Highly efficient electro-generation of H2O2 by adjusting liquid-gas-solid three phase interfaces of porous carbonaceous cathode during oxygen reduction reaction, Water Res., 164, 114933, 10.1016/j.watres.2019.114933 Tan, 2019, In situ generation of H2O2 using MWCNT-Al/O2 system and possible application for glyphosate degradation, Sci. Total Environ., 650, 2567, 10.1016/j.scitotenv.2018.09.353 An, 2020, Revealing decay mechanisms of H2O2-based electrochemical advanced oxidation processes after long-term operation for phenol degradation, Environ. Sci. Technol., 54, 10916, 10.1021/acs.est.0c03233 Chen, 2020, Fenton-like degradation of sulfamerazine at nearly neutral pH using Fe-Cu-CNTs and Al0-CNTs for in-situ generation of H2O2/•OH/O2•-, Chem. Eng. J., 396, 125329, 10.1016/j.cej.2020.125329 Liu, 2021, Fe3O4@CNT as a high-effective and steady chainmail catalyst for tetracycline degradation with peroxydisulfate activation: Performance and mechanism, Sep. Purif. Technol., 273, 118705, 10.1016/j.seppur.2021.118705 Tian, 2020, Simultaneously accelerating the regeneration of FeII and the selectivity of 2e- oxygen reduction over sulfide iron-based carbon aerogel in electro-Fenton system, Appl. Catal. B: Environ., 272, 119039, 10.1016/j.apcatb.2020.119039 Yang, 2018, Zn(0)-CNTs-Fe3O4 catalytic in situ generation of H2O2 for heterogeneous Fenton degradation of 4-chlorophenol, Chemosphere, 208, 665, 10.1016/j.chemosphere.2018.06.016 Shi, 2017, Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide, Nat. Commun., 8, 701, 10.1038/s41467-017-00585-6 Jiang, 2018, Selective Electrochemical H2O2 production through two-electron oxygen electrochemistry, Adv. Energy Mater., 8, 1801909, 10.1002/aenm.201801909 Liu, 2020, High-efficient generation of H2O2 by aluminum-graphite composite through selective oxygen reduction for degradation of organic contaminants, Environ. Sci. Technol., 54, 14085, 10.1021/acs.est.0c05974 Zhang, 2020, Carbon nanodot-modified FeOCl for photo-assisted Fenton reaction featuring synergistic in-situ H2O2 production and activation, Appl. Catal. B: Environ., 266, 118665, 10.1016/j.apcatb.2020.118665 Jiang, 2019, Photo-Fenton degradation of phenol by CdS/rGO/Fe2+ at natural pH with in situ-generated H2O2, Appl. Catal. B: Environ., 241, 367, 10.1016/j.apcatb.2018.09.049 Lian, 2019, Simultaneously providing iron source toward electro-Fenton process and enhancing hydrogen peroxide production via a Fe3O4 nanoparticles embedded graphite felt electrode, ACS Appl. Mater. Inter., 11, 45692, 10.1021/acsami.9b16236 Chen, 2021, Photocatalytic H2O2 production using Ti3C2 MXene as a non-noble metal cocatalyst, Appl. Catal. A: Gen., 618, 118127, 10.1016/j.apcata.2021.118127 Lu, 2021, Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides, Chem. Eng. J., 422, 130126, 10.1016/j.cej.2021.130126 Lu, 2020, Fe3O4/graphene aerogels: A stable and efficient persulfate activator for the rapid degradation of malachite green, Chemosphere, 251, 126402, 10.1016/j.chemosphere.2020.126402 Lu, 2020, Dual-reaction-center catalytic process continues Fenton’s story, Front. Environ. Sci. Eng., 14, 82, 10.1007/s11783-020-1261-x Lu, 2020, Dramatic enhancement effects of l-cysteine on the degradation of sulfadiazine in Fe3+/CaO2 system, J. Hazard. Mater., 383, 121133, 10.1016/j.jhazmat.2019.121133 Su, 2018, Enhanced oxidative and adsorptive removal of diclofenac in heterogeneous Fenton-like reaction with sulfide modified nanoscale zerovalent iron, Environ. Sci. Technol., 52, 6466, 10.1021/acs.est.8b00231 Zhu, 2020, Fluoride removal efficiencies and mechanism of schwertmannite from KMnO4/MnO2–Fe(II) processes, J. Hazard. Mater., 397, 122789, 10.1016/j.jhazmat.2020.122789 Wang, 2019, A novel approach to rapidly purify acid mine drainage through chemically forming schwertmannite followed by lime neutralization, Water Res., 151, 515, 10.1016/j.watres.2018.12.052 Hedrich, 2011, Schwertmannite formation adjacent to bacterial cells in a mine water treatment plant and in pure cultures of Ferrovum myxofaciens, Environ. Sci. Technol., 45, 7685, 10.1021/es201564g Ai, 2019, A novel waste activated sludge multistage utilization strategy for preparing carbon-based Fenton-like catalysts: Catalytic performance assessment and micro-interfacial mechanisms, Water Res., 150, 473, 10.1016/j.watres.2018.11.085 Zhou, 2020, Enhanced degradation of acid red 73 by using cellulose-based hydrogel coated Fe3O4 nanocomposite as a Fenton-like catalyst, Int. J. Biol. Macromol., 152, 242, 10.1016/j.ijbiomac.2020.02.200 Li, 2020, Producing •OH, SO4•- and O2•-. in heterogeneous Fenton reaction induced by Fe3O4-modified schwertmannite, Chem. Eng. J., 393, 124735, 10.1016/j.cej.2020.124735 Yan, 2012, Biocompatibility evaluation of magnetosomes formed by Acidithiobacillus ferrooxidans, Mater. Sci. Eng. C, 32, 1802, 10.1016/j.msec.2012.04.062 Yan, 2013, Magnetic properties of Acidithiobacillus ferrooxidans, Mater. Sci. Eng. C, 33, 4026, 10.1016/j.msec.2013.05.046 Li, 2021, Modifying organic carbon in Fe3O4-loaded schwertmannite to improve heterogeneous Fenton activity through accelerating Fe(II) generation, Appl. Catal. B: Environ., 285, 119830, 10.1016/j.apcatb.2020.119830 Wang, 2020, Removing organic matters from reverse osmosis concentrate using advanced oxidation-biological activated carbon process combined with Fe(3+)/humus-reducing bacteria, Ecotoxicol. Environ. Saf., 203, 110945, 10.1016/j.ecoenv.2020.110945 Liao, 2009, Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition, Mater. Sci. Eng. C, 29, 211, 10.1016/j.msec.2008.06.011 Yan, 2017, Assessment of catalytic activities of selected iron hydroxysulphates biosynthesized using Acidithiobacillus ferrooxidans for the degradation of phenol in heterogeneous Fenton-like reactions, Sep. Purif. Technol., 185, 83, 10.1016/j.seppur.2017.05.008 Wang, 2014, Dramatically enhanced aerobic atrazine degradation with Fe@Fe2O3 core-shell nanowires by tetrapolyphosphate, Environ. Sci. Technol., 48, 3354, 10.1021/es404741x Su, 2019, Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant, Appl. Catal. B: Environ., 245, 583, 10.1016/j.apcatb.2018.12.075 Yu, 2019, Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: Analysis of degradation pathways and intermediates, Chem. Eng. J., 374, 316, 10.1016/j.cej.2019.05.177 Parr, 1984, Density functional approach to the frontier-electron theory of chemical reactivity, J. Am. Chem. Soc., 106, 4049, 10.1021/ja00326a036 Meng, 2020, Assessment of schwertmannite, jarosite and goethite as adsorbents for efficient adsorption of phenanthrene in water and the regeneration of spent adsorbents by heterogeneous fenton-like reaction, Chemosphere, 244, 125523, 10.1016/j.chemosphere.2019.125523 Zhu, 2020, Controllable biosynthesis of nanoscale schwertmannite and the application in heavy metal effective removal, Appl. Surf. Sci., 529, 147012, 10.1016/j.apsusc.2020.147012 Gong, 2018, In-situ synthesis of hydrogen peroxide in a novel Zn-CNTs-O2 system, J. Power Sources, 378, 190, 10.1016/j.jpowsour.2017.12.040 Wang, 2015, Sulfate local coordination environment in schwertmannite, Environ. Sci. Technol., 49, 10440, 10.1021/acs.est.5b02660 Gorski, 2012, Fe atom exchange between aqueous Fe2+ and magnetite, Environ. Sci. Technol., 46, 12399, 10.1021/es204649a Li, 2020, Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer, Front. Environ. Sci. Eng., 14, 102, 10.1007/s11783-020-1281-6 Li, 2020, Enhanced O2•-. and HO• via in situ generating H2O2 at activated graphite felt cathode for efficient photocatalytic fuel cell, Chem. Eng. J., 399, 10.1016/j.cej.2020.125839 Shen, 2020, In situ-formed PdFe nanoalloy and carbon defects in cathode for synergic reduction-oxidation of chlorinated pollutants in electro-Fenton process, Environ. Sci. Technol., 54, 4564, 10.1021/acs.est.9b05896 Wang, 2021, Ascorbate guided conversion of hydrogen peroxide to hydroxyl radical on goethite, Appl. Catal. B: Environ., 282, 119558, 10.1016/j.apcatb.2020.119558 Zhu, 2019, Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review, Appl. Catal. B: Environ., 255, 117739, 10.1016/j.apcatb.2019.05.041 Zheng, 2020, Integration of a photo-Fenton reaction and a membrane filtration using CS/PAN@FeOOH/g-C3N4 electrospun nanofibers: Synthesis, characterization, self-cleaning performance and mechanism, Appl. Catal. B: Environ., 281, 119519, 10.1016/j.apcatb.2020.119519