Organic carbon modified Fe3O4/schwertmannite for heterogeneous Fenton reaction featuring synergistic in-situ H2O2 generation and activation
Tài liệu tham khảo
An, 2019, Highly efficient electro-generation of H2O2 by adjusting liquid-gas-solid three phase interfaces of porous carbonaceous cathode during oxygen reduction reaction, Water Res., 164, 114933, 10.1016/j.watres.2019.114933
Tan, 2019, In situ generation of H2O2 using MWCNT-Al/O2 system and possible application for glyphosate degradation, Sci. Total Environ., 650, 2567, 10.1016/j.scitotenv.2018.09.353
An, 2020, Revealing decay mechanisms of H2O2-based electrochemical advanced oxidation processes after long-term operation for phenol degradation, Environ. Sci. Technol., 54, 10916, 10.1021/acs.est.0c03233
Chen, 2020, Fenton-like degradation of sulfamerazine at nearly neutral pH using Fe-Cu-CNTs and Al0-CNTs for in-situ generation of H2O2/•OH/O2•-, Chem. Eng. J., 396, 125329, 10.1016/j.cej.2020.125329
Liu, 2021, Fe3O4@CNT as a high-effective and steady chainmail catalyst for tetracycline degradation with peroxydisulfate activation: Performance and mechanism, Sep. Purif. Technol., 273, 118705, 10.1016/j.seppur.2021.118705
Tian, 2020, Simultaneously accelerating the regeneration of FeII and the selectivity of 2e- oxygen reduction over sulfide iron-based carbon aerogel in electro-Fenton system, Appl. Catal. B: Environ., 272, 119039, 10.1016/j.apcatb.2020.119039
Yang, 2018, Zn(0)-CNTs-Fe3O4 catalytic in situ generation of H2O2 for heterogeneous Fenton degradation of 4-chlorophenol, Chemosphere, 208, 665, 10.1016/j.chemosphere.2018.06.016
Shi, 2017, Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide, Nat. Commun., 8, 701, 10.1038/s41467-017-00585-6
Jiang, 2018, Selective Electrochemical H2O2 production through two-electron oxygen electrochemistry, Adv. Energy Mater., 8, 1801909, 10.1002/aenm.201801909
Liu, 2020, High-efficient generation of H2O2 by aluminum-graphite composite through selective oxygen reduction for degradation of organic contaminants, Environ. Sci. Technol., 54, 14085, 10.1021/acs.est.0c05974
Zhang, 2020, Carbon nanodot-modified FeOCl for photo-assisted Fenton reaction featuring synergistic in-situ H2O2 production and activation, Appl. Catal. B: Environ., 266, 118665, 10.1016/j.apcatb.2020.118665
Jiang, 2019, Photo-Fenton degradation of phenol by CdS/rGO/Fe2+ at natural pH with in situ-generated H2O2, Appl. Catal. B: Environ., 241, 367, 10.1016/j.apcatb.2018.09.049
Lian, 2019, Simultaneously providing iron source toward electro-Fenton process and enhancing hydrogen peroxide production via a Fe3O4 nanoparticles embedded graphite felt electrode, ACS Appl. Mater. Inter., 11, 45692, 10.1021/acsami.9b16236
Chen, 2021, Photocatalytic H2O2 production using Ti3C2 MXene as a non-noble metal cocatalyst, Appl. Catal. A: Gen., 618, 118127, 10.1016/j.apcata.2021.118127
Lu, 2021, Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides, Chem. Eng. J., 422, 130126, 10.1016/j.cej.2021.130126
Lu, 2020, Fe3O4/graphene aerogels: A stable and efficient persulfate activator for the rapid degradation of malachite green, Chemosphere, 251, 126402, 10.1016/j.chemosphere.2020.126402
Lu, 2020, Dual-reaction-center catalytic process continues Fenton’s story, Front. Environ. Sci. Eng., 14, 82, 10.1007/s11783-020-1261-x
Lu, 2020, Dramatic enhancement effects of l-cysteine on the degradation of sulfadiazine in Fe3+/CaO2 system, J. Hazard. Mater., 383, 121133, 10.1016/j.jhazmat.2019.121133
Su, 2018, Enhanced oxidative and adsorptive removal of diclofenac in heterogeneous Fenton-like reaction with sulfide modified nanoscale zerovalent iron, Environ. Sci. Technol., 52, 6466, 10.1021/acs.est.8b00231
Zhu, 2020, Fluoride removal efficiencies and mechanism of schwertmannite from KMnO4/MnO2–Fe(II) processes, J. Hazard. Mater., 397, 122789, 10.1016/j.jhazmat.2020.122789
Wang, 2019, A novel approach to rapidly purify acid mine drainage through chemically forming schwertmannite followed by lime neutralization, Water Res., 151, 515, 10.1016/j.watres.2018.12.052
Hedrich, 2011, Schwertmannite formation adjacent to bacterial cells in a mine water treatment plant and in pure cultures of Ferrovum myxofaciens, Environ. Sci. Technol., 45, 7685, 10.1021/es201564g
Ai, 2019, A novel waste activated sludge multistage utilization strategy for preparing carbon-based Fenton-like catalysts: Catalytic performance assessment and micro-interfacial mechanisms, Water Res., 150, 473, 10.1016/j.watres.2018.11.085
Zhou, 2020, Enhanced degradation of acid red 73 by using cellulose-based hydrogel coated Fe3O4 nanocomposite as a Fenton-like catalyst, Int. J. Biol. Macromol., 152, 242, 10.1016/j.ijbiomac.2020.02.200
Li, 2020, Producing •OH, SO4•- and O2•-. in heterogeneous Fenton reaction induced by Fe3O4-modified schwertmannite, Chem. Eng. J., 393, 124735, 10.1016/j.cej.2020.124735
Yan, 2012, Biocompatibility evaluation of magnetosomes formed by Acidithiobacillus ferrooxidans, Mater. Sci. Eng. C, 32, 1802, 10.1016/j.msec.2012.04.062
Yan, 2013, Magnetic properties of Acidithiobacillus ferrooxidans, Mater. Sci. Eng. C, 33, 4026, 10.1016/j.msec.2013.05.046
Li, 2021, Modifying organic carbon in Fe3O4-loaded schwertmannite to improve heterogeneous Fenton activity through accelerating Fe(II) generation, Appl. Catal. B: Environ., 285, 119830, 10.1016/j.apcatb.2020.119830
Wang, 2020, Removing organic matters from reverse osmosis concentrate using advanced oxidation-biological activated carbon process combined with Fe(3+)/humus-reducing bacteria, Ecotoxicol. Environ. Saf., 203, 110945, 10.1016/j.ecoenv.2020.110945
Liao, 2009, Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition, Mater. Sci. Eng. C, 29, 211, 10.1016/j.msec.2008.06.011
Yan, 2017, Assessment of catalytic activities of selected iron hydroxysulphates biosynthesized using Acidithiobacillus ferrooxidans for the degradation of phenol in heterogeneous Fenton-like reactions, Sep. Purif. Technol., 185, 83, 10.1016/j.seppur.2017.05.008
Wang, 2014, Dramatically enhanced aerobic atrazine degradation with Fe@Fe2O3 core-shell nanowires by tetrapolyphosphate, Environ. Sci. Technol., 48, 3354, 10.1021/es404741x
Su, 2019, Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant, Appl. Catal. B: Environ., 245, 583, 10.1016/j.apcatb.2018.12.075
Yu, 2019, Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: Analysis of degradation pathways and intermediates, Chem. Eng. J., 374, 316, 10.1016/j.cej.2019.05.177
Parr, 1984, Density functional approach to the frontier-electron theory of chemical reactivity, J. Am. Chem. Soc., 106, 4049, 10.1021/ja00326a036
Meng, 2020, Assessment of schwertmannite, jarosite and goethite as adsorbents for efficient adsorption of phenanthrene in water and the regeneration of spent adsorbents by heterogeneous fenton-like reaction, Chemosphere, 244, 125523, 10.1016/j.chemosphere.2019.125523
Zhu, 2020, Controllable biosynthesis of nanoscale schwertmannite and the application in heavy metal effective removal, Appl. Surf. Sci., 529, 147012, 10.1016/j.apsusc.2020.147012
Gong, 2018, In-situ synthesis of hydrogen peroxide in a novel Zn-CNTs-O2 system, J. Power Sources, 378, 190, 10.1016/j.jpowsour.2017.12.040
Wang, 2015, Sulfate local coordination environment in schwertmannite, Environ. Sci. Technol., 49, 10440, 10.1021/acs.est.5b02660
Gorski, 2012, Fe atom exchange between aqueous Fe2+ and magnetite, Environ. Sci. Technol., 46, 12399, 10.1021/es204649a
Li, 2020, Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer, Front. Environ. Sci. Eng., 14, 102, 10.1007/s11783-020-1281-6
Li, 2020, Enhanced O2•-. and HO• via in situ generating H2O2 at activated graphite felt cathode for efficient photocatalytic fuel cell, Chem. Eng. J., 399, 10.1016/j.cej.2020.125839
Shen, 2020, In situ-formed PdFe nanoalloy and carbon defects in cathode for synergic reduction-oxidation of chlorinated pollutants in electro-Fenton process, Environ. Sci. Technol., 54, 4564, 10.1021/acs.est.9b05896
Wang, 2021, Ascorbate guided conversion of hydrogen peroxide to hydroxyl radical on goethite, Appl. Catal. B: Environ., 282, 119558, 10.1016/j.apcatb.2020.119558
Zhu, 2019, Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review, Appl. Catal. B: Environ., 255, 117739, 10.1016/j.apcatb.2019.05.041
Zheng, 2020, Integration of a photo-Fenton reaction and a membrane filtration using CS/PAN@FeOOH/g-C3N4 electrospun nanofibers: Synthesis, characterization, self-cleaning performance and mechanism, Appl. Catal. B: Environ., 281, 119519, 10.1016/j.apcatb.2020.119519