Orf1B controls secretion of T3SS proteins and contributes to Edwardsiella piscicida adhesion to epithelial cells
Tóm tắt
Edwardsiella piscicida is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish. The type III secretion system (T3SS) is one of its two most important virulence islands. T3SS protein EseJ inhibits E. piscicida adhesion to epithelioma papillosum cyprini (EPC) cells by negatively regulating type 1 fimbria. Type 1 fimbria helps E. piscicida to adhere to fish epithelial cells. In this study, we characterized a functional unknown protein (Orf1B) encoded within the T3SS gene cluster of E. piscicida. This protein consists of 122 amino acids, sharing structural similarity with YscO in Vibrio parahaemolyticus. Orf1B controls secretion of T3SS translocon and effectors in E. piscicida. By immunoprecipitation, Orf1B was shown to interact with T3SS ATPase EsaN. This interaction may contribute to the assembly of the ATPase complex, which energizes the secretion of T3SS proteins. Moreover, disruption of Orf1B dramatically decreased E. piscicida adhesion to EPC cells due to the increased steady-state protein level of EseJ within E. piscicida. Taken together, this study partially unraveled the mechanisms through which Orf1B promotes secretion of T3SS proteins and contributes to E. piscicida adhesion. This study helps to improve our understanding on molecular mechanism of E. piscicida pathogenesis.
Tài liệu tham khảo
Shao S, Lai Q, Liu Q, Wu H, Xiao J, Shao Z, Wang Q, Zhang Y (2015) Phylogenomics characterization of a highly virulent Edwardsiella strain ET080813(T) encoding two distinct T3SS and three T6SS gene clusters: propose a novel species as Edwardsiella anguillarum sp. nov. Syst Appl Microbiol 38:36–47
Abayneh T, Colquhoun DJ, Sorum H (2013) Edwardsiella piscicida sp. nov., a novel species pathogenic to fish. J Appl Microbiol 114:644–654
Yang M, Lv Y, Xiao J, Wu H, Zheng H, Liu Q, Zhang Y, Wang Q (2012) Edwardsiella comparative phylogenomics reveal the new intra/inter-species taxonomic relationships, virulence evolution and niche adaptation mechanisms. PLoS One 7:e36987
Buján N, Toranzo AE, Magariños B (2018) Edwardsiella piscicida: a significant bacterial pathogen of cultured fish. Dis Aquat Organ 131:59–71
Janda JM, Abbott SL, Oshiro LS (1991) Penetration and replication of Edwardsiella spp. in HEp-2 cells. Infect Immun 59:154–161
Tan YP, Zheng J, Tung SL, Rosenshine I, Leung KY (2005) Role of type III secretion in Edwardsiella tarda virulence. Microbiology 151:2301–2313
Okuda J, Arikawa Y, Takeuchi Y, Mahmoud MM, Suzaki E, Kataoka K, Suzuki T, Okinaka Y, Nakai T (2006) Intracellular replication of Edwardsiella tarda in murine macrophage is dependent on the type III secretion system and induces an up-regulation of anti-apoptotic NF-kappaB target genes protecting the macrophage from staurosporine-induced apoptosis. Microb Pathog 41:226–240
Zheng J, Leung KY (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66:1192–1206
Galán JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573
Xie HX, Yu HB, Zheng J, Nie P, Foster LJ, Mok YK, Finlay BB, Leung KY (2010) EseG, an effector of the type III secretion system of Edwardsiella tarda, triggers microtubule destabilization. Infect Immun 78:5011–5021
Xie HX, Lu JF, Zhou Y, Yi J, Yu XJ, Leung KY, Nie P (2015) Identification and functional characterization of the novel Edwardsiella tarda effector EseJ. Infect Immun 83:1650–1660
Gao ZP, Nie P, Lu JF, Liu LY, Xiao TY, Liu W, Liu JS, Xie HX (2015) Type III secretion system translocon component EseB forms filaments on and mediates autoaggregation of and biofilm formation by Edwardsiella tarda. Appl Environ Microbiol 81:6078–6087
Zhang Q, He TT, Li DY, Liu LY, Nie P, Xie HX (2019) The Edwardsiella piscicida type III effector EseJ suppresses expression of type 1 fimbriae, leading to decreased bacterial adherence to host cells. Infect Immun 87:e00187-e219
Sakai T, Kanai K, Osatomi K, Yoshikoshi K (2003) Identification of a 19.3-kDa protein in MRHA-positive Edwardsiella tarda: putative fimbrial major subunit. FEMS Microbiol Lett 226:127–133
Srinivasa Rao PS, Lim TM, Leung KY (2003) Functional genomics approach to the identification of virulence genes involved in Edwardsiella tarda pathogenesis. Infect Immun 71:1343–1351
Sakai T, Kanai K, Osatomi K, Yoshikoshi K (2004) Identification and characterization of a fimbrial gene cluster of Edwardsiella tarda expressing mannose-resistant hemagglutination. Fish Pathol 39:87–93
Romo-Castillo M, Andrade A, Espinosa N, Feria JM, Soto E, Díaz-Guerrero M, González-Pedrajo B (2014) EscO, a functional and structural analog of the flagellar FliJ protein, is a positive regulator of EscN ATPase activity of the enteropathogenic Escherichia coli injectisome. J Bacteriol 196:2227–2241
Cherradi Y, Hachani A, Allaoui A (2014) Spa13 of Shigella flexneri has a dual role: chaperone escort and export gate-activator switch of the type III secretion system. Microbiology 160:130–141
Evans LDB, Hughes C (2009) Selective binding of virulence type III export chaperones by FliJ escort orthologues InvI and YscO. FEMS Microbiol Lett 293:292–297
Payne PL, Straley SC (1998) YscO of Yersinia pestis is a mobile core component of the Yop secretion system. J Bacteriol 180:3882–3890
Riordan KE, Schneewind O (2008) YscU cleavage and the assembly of Yersinia type III secretion machine complexes. Mol Microbiol 68:1485–1501
Diepold A, Wiesand U, Amstutz M, Cornelis GR (2012) Assembly of the Yersinia injectisome: the missing pieces. Mol Microbiol 85:878–892
Minamino T, Kinoshita M, Inoue Y, Morimoto YV, Ihara K, Koya S, Hara N, Nishioka N, Kojima S, Homma M, Namba K (2016) FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella. Microbiologyopen 5:424–435
Ibuki T, Imada K, Minamino T, Kato T, Miyata T, Namba K (2011) Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nat Struct Mol Biol 18:277–282
Ling SHM, Wang XH, Xie L, Lim TM, Leung KY (2000) Use of green fluorescent protein (GFP) to track the invasive pathways of Edwardsiella tarda in the in vivo and in vitro fish models. Microbiology 146:7–19
Fijan N, Sulimanović D, Bearzotti M, Muzinić D, Zwillenberg LO, Chilmonczyk S, Vautherot JF, de Kinkelin P (1983) Some properties of the epithelioma papulosum cyprinid (EPC) cell line from carp Cyprinus carpio. Ann Inst Pasteur 134:207–220
Edwards RA, Keller LH, Schifferli DM (1998) Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207:149–157
Zhou Y, Liu LY, He TT, Laghari ZA, Nie P, Gao Q, Xie HX (2016) Edwardsiella tarda EsaE (Orf19 protein) is required for the secretion of type III substrates, and pathogenesis in fish. Vet Microbiol 190:12–18
Lu JF, Wang WN, Wang GL, Zhang H, Zhou Y, Gao ZP, Nie P, Xie HX (2016) Edwardsiella tarda (Orf13 protein) is a type III secretion system-secreted protein that is required for the injection of effectors, secretion of translocators, and pathogenesis in fish. Infect Immun 84:2–10
Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645
Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201
Wang D, Roe AJ, McAteer S, Shipston MJ, Gally DL (2008) Hierarchal type III secretion of translocators and effectors from Escherichia coli O157:H7 requires the carboxy terminus of SepL that binds to Tir. Mol Microbiol 69:1499–1512
Yu XJ, McGourty K, Liu M, Unsworth KE, Holden DW (2010) pH sensing by intracellular Salmonella induces effector translocation. Science 328:1040–1043
Takaya A, Takeda H, Tashiro S, Kawashima H, Yamamoto T (2019) Chaperone-mediated secretion switching from early to middle substrates in the type III secretion system encoded by Salmonella pathogenicity island 2. J Biol Chem 294:3783–3793
Mukerjea R, Ghosh P (2013) Functionally essential interaction between Yersinia YscO and the T3S4 domain of YscP. J Bacteriol 195:4631–4638
Majewski DD, Worrall LJ, Hong C, Atkinson CE, Vuckovic M, Watanabe N, Yu Z, Strynadka NCJ (2019) Cryo-EM structure of the homohexameric T3SS ATPase-central stalk complex reveals rotary ATPase-like asymmetry. Nat Commun 10:626
Li Y, Wang H, Ren J, Chen L, Zhu Ge X, Hu L, Li D, Tang F, Dai J (2016) The Yfco fimbriae gene enhances adherence and colonization abilities of avian pathogenic Escherichia coli in vivo and in vitro. Microb Pathog 100:56–61
McLay RB, Nguyen HN, Jaimes-Lizcano YA, Dewangan NK, Alexandrova S, Rodrigues DF, Cirino PC, Conrad JC (2017) Level of fimbriation alters the adhesion of Escherichia coli bacteria to interfaces. Langmuir 34:1133–1142