Ordinary p-adic étale Cohomology Groups Attached to Towers of Elliptic Modular Curves

Wiley - 1999
Masami Ohta1
1Department of Mathematics, Tokai University, Hiratsuka, Kanagawa, Japan

Tóm tắt

Fix a prime number p ≥ 5 and a positive integer N prime to p. We consider the projective limits of p-adic étale cohomology groups of the modular curves X1(Npr) and Y1(Npr) (r ≥ 1), which are denoted by ESp(N) Z p and GES p(N)Z p , respectively. Let e* ′ be the projector to the direct sum of the ωi-eigenspaces of the ordinary part, for i ≢ 0, -1 mod p-1. Our main result states that e* ′ GESp (N)Z p has a good p-adic Hodge structure, which can be described in terms of λ-adic modular forms, extending the previously known result for e*′ ESp (N)Z p . We then apply the method of Harder and Pink to the Galois representation on e*′ ESp(N) Z p to construct large unramified abelian p-extensions over cyclotomic Z p -extensions of abelian number fields.

Từ khóa


Tài liệu tham khảo

Ash, A. and Stevens, G.: p-adic deformations of cohomology classes of subgroups of GL(n,z) to appear in Proc. Journées Arithmétiques 1995, Barcelone.

Bosch, S., Lütkebohmert, W. and Raynaud, M.: Néron Models, Ergebnisse der Math. 3, Folge 21, SpringerVerlag, 1990.

Deligne, P.: Intégration sur un cycle évanescent, Invent. Math. 76 (1983), 129–143.

Harder, G. and Pink, R.: Modular konstruierte unverzweigte abelshe p-Erweiterungen von ℚ(?p) und die Struktur ihrer Galoisgruppen, Math. Nachr. 159 (1992), 83–99.

Hida, H.: A padic measure attached to the zeta functions associated with two elliptic modular forms. I, Invent. Math. 79 (1985), 159–195.

Hida, H.: Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École. Norm. Sup. (4) 19 (1986), 231–273.

Hida, H.: Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms, Invent. Math. 85 (1986), 543–613.

Hida, H.: Elementary Theory of L–functions and Eisenstein Series, London Math. Soc. Stud. Texts 26, Cambridge Univ. Press, 1993.

Katz, N.:p-padic interpolation of real analytic Eisenstein series, Ann. Math. 104 (1976), 459–571.

Katz, N.: The Eisenstein measure and padic interpolation, Amer. J. Math. 99 (1977), 238–311.

Kurihara, M.: Ideal class groups of cyclotomic fields and modular forms of level 1, J. Number Theory 45 (1993), 281–294.

Mazur, B.: Rational isogenies of prime degree, Invent. Math. 44 (1978), 129–162.

Mazur, B. and Wiles, A.: Class fields of abelian extensions of Q Invent. Math. 76 (1984), 179–330.

Mazur, B. and Wiles, A.: On padic analytic families of Galois representations, Compositio Math. 59 (1986), 231–264.

Ohta, M.: On cohomology groups attached to towers of algebraic curves, J. Math. Soc. Japan 45 (1993), 131–183.

Ohta, M.: On the p-adic Eichler–Shimura isomorphism for ?-adic cusp forms, J. reine angew. Math. 463 (1995), 49–98.

Saby, N.: Théorie d'Iwasawa g´eom´etrique: un théorème de comparaison, J. Number Theory 59 (1996), 225–247.

Serre, J.P.: Groupes algébriques et corps de classes, Hermann, Paris, 1959.

Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton Univ. Press, 1971.

Tate, J.:p-divisible groups, in Proc. Conf. on Local Fields, SpringerVerlag, 1967, pp. 158–183.

Tilouine, J.: Un sous groupe pdivisible de la jacobienne de X 1(Np r) comme module sur l'algèbre de Hecke, Bull. Soc. Math. Fr. 115 (1987), 329–360.

Washington, L.: Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, SpringerVerlag, 1982.

Wiles, A.: The Iwasawa conjecture for totally real fields, Ann. Math. 131 (1990), 493–540.

Théorie des Topos et Cohomologie Étale des Schémas, Tome 3, dir. par M. Artin, A. Grothendieck et J. L. Verdier, Lecture Notes in Math. 305, SpringerVerlag, 1973.

Séminaire de Géométrie Algébrique du BoisMarieSGA 41/2, par P. Deligne et al., Lecture Notes in Math. 569, SpringerVerlag, 1977.