Orderfield property of mixtures of stochastic games

Sankhya A - Tập 72 Số 1 - Trang 246-275 - 2010
Nagarajan Krishnamurthy1, T. Parthasarathy2, G. Ravindran2
1Chennai Mathematical Institute
2Indian Statistical Institute, Chennai, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bewley, T. and Kohlberg, E. (1976). The asymptotic theory of stochastic games. Math. Oper. Res., 1, 197–208.

Blackwell, D. and Ferguson, T.S. (1968). The big match. Ann. Math. Statist., 39, 159–168.

Condon, A. (1992). The complexity of stochastic games. Inform. and Comput., 96, 203–224.

Cottle, R.W., Pang, J.S. and Stone, R.E. (1992). The Linear Complementarity Problem. Academic Press, New York.

Filar, J.A. (1981). Orderfield property of stochastic games when the player who controls the transition changes from state to state. J. Optim. Theory Appl., 34, 505–517.

Filar, J.A. and Vrieze, O.J. (1997). Competitive Markov Decision Processes. Springer, New York.

Filar, J.A., Schultz, T., Thuijsman, F. and Vrieze, O.J. (1991). Nonlinear programming and stationary equilibria in stochastic games. Math. Program., 50, 227–237.

Fink, A.M. (1964). Equilibrium in a stochastic n-person game. J. Sci. Hiroshima Univ. Ser. A-I Math., 28, 89–93.

Flesch, J., Thuijsman, F. and Vrieze, O.J. (2007). Stochastic games with additive transitions. European J. Oper. Res., 179, 483–497.

Gillette, D. (1957). Stochastic games with zero-stop probabilities. In Contributions to the Theory of Games, Vol. III, (M. Dresher, A.W. Tucker and P. Wolfe, eds.). Ann. Math. Studies, 39. Princeton University Press, Princeton, NJ, 179–188.

Howson, J.T., Jr. (1972). Equilibria of polymatrix games. Management Sci., 18, 312–318.

Janovskaya, E.B. (1968). Equilibrium points of polymatrix games. Litovsk. Mat. Sb., 8, 381–384. (In Russian).

Kaplansky, I. (1945). A contribution to von Neumann’s theory of games. Ann. of Math. (2), 46, 474–479.

Lemke, C. (1965). Bimatrix equilibrium points and mathematical programming. Management Sci., 11, 681–689.

Maitra, A. and Parthasarathy, T. (1970). On stochastic games. J. Optim. Theory Appl., 5, 289–300.

Maitra, A.P. and Sudderth, W. (1996). Discrete Gambling and Stochastic Games. Springer-Verlag, New York.

Mertens, J.F. (2002). Stochastic games. In Handbook of Game Theory with Economic Applications, 3, (R. Aumann and S. Hart, eds.). Elsevier, 1809–1832.

Mertens, J.F. and Neyman, A. (1981). Stochastic games. Internat. J. Game Theory, 10, 53–66.

Mohan, S.R., Neogy, S.K. and Parthasarathy, T. (1997). Linear complementarity and discounted polystochastic game when one player controls transitions. In Complementarity and Variational Problems (Baltimore, MD, 1995), (M.C. Ferris, J.-S. Pang, eds.). SIAM, Philadelphia, 284–294.

Mohan, S.R., Neogy S.K. and Parthasarathy, T. (2001). Pivoting algorithms for some classes of stochastic games: A survey. Int. Game Theory Rev., 3, 253–281.

Mohan, S.R., Neogy S.K., Parthasarathy, T. and Sinha, S. (1999). Vertical linear complementarity and discounted zero-sum stochastic games with ARAT structure. Math. Program., Ser. A, 86, 637–648.

Nash, J.F. (1951). Non-cooperative Games. Ann. of Math. (2), 54, 286–295.

Neogy, S.K., Das, A.K., Sinha, S. and Gupta, A. (2008). On a mixture class of stochastic game with ordered field property. In Mathematical Programming and Game Theory for Decision Making, (S.K. Neogy, R.B. Bapat, A.K. Das and T. Parthasarathy, eds.). Stat. Sci. Interdiscip. Res., 1. World Scientific, Singapore, 451–477.

Nowak, A.S. and Raghavan, T.E.S. (1993). A finite step algorithm via a bimatrix game to a single controller non-zero sum stochastic game. Math. Program., 59, 249–259.

Parthasarathy, T. and Raghavan, T.E.S. (1981). An orderfield property for stochastic games when one player controls transition probabilities. J. Optim. Theory Appl., 33, 375–392.

Parthasarathy, T., Tijs, S.J. and Vrieze, O.J. (1984). Stochastic games with state independent transitions and separable rewards. In Selected Topics in Operations Research and Mathematical Economics (Karlsruhe, 1983), (G. Hammer and D. Pallaschke, eds.). Lecture Notes in Econom. and Math. Systems, 226, Springer, Berlin, 262–271.

Raghavan, T.E.S. (2003). Finite-step algorithms for single controller and perfect information stochastic games. In Stochastic games and applications (Stony Brook, NY, 1999), (Abraham Neyman and Sylvain Sorin, eds.). NATO Sci. Ser. C Maths. Phys. Sci., 570. Kluwer Academic Publishers Group, Dordrecht, 227–251.

Raghavan, T.E.S. and Filar, J.A. (1991). Algorithms for stochastic games — A survey. Z. Oper. Res., 35, 437–472.

Raghavan, T.E.S. and Syed, Z. (2002). Computing stationary Nash equilibria of undiscounted single-controller stochastic games. Math. Oper. Res., 27, 384–400.

Raghavan, T.E.S. and Syed, Z. (2003). A policy-improvement type algorithm for solving zero-sum two-person stochastic games of perfect information. Math. Program., Ser. A, 95, 513–532.

Raghavan, T.E.S., Tijs, S.J. and Vrieze, O.J. (1986). Stochastic games with additive rewards and additive transitions. J. Optim. Theory Appl., 47, 451–464.

Schultz, T.A. (1992). Linear complementarity and discounted switching controller stochastic games. J. Optim. Theory Appl., 73, 89–99.

Shapley, L. (1953). Stochastic games. Proc. Natl. Acad. Sci., 39, 1095–1100.

Sinha, S. (1989). A contribution to the theory of stochastic games. Ph.D. thesis, Indian Statistical Institute, New Delhi, India.

Sobel, M.J. (1971). Noncooperative stochastic games. Ann. Math. Statist., 42, 1930–1935.

Sobel, M.J. (1981). Myopic solutions of Markov decision processes and stochastic games. Oper. Res., 29, 995–1009.

Syed, Z. (1999). Algorithms for stochastic games and related topics. Ph. D. thesis, University of Illinois at Chicago.

Takahashi, M. (1964). Equilibrium points of stochastic noncooperative n-person games. J. Sci. Hiroshima Univ. Ser. A-I Math., 28, 95–99.

Thuijsman, F. and Raghavan, T.E.S. (1997). Perfect information stochastic games and related classes. Internat. J. Game Theory, 26, 403–408.

Vrieze, O.J. (1981). Linear programming and undiscounted stochastic game in which one player controls transitions. OR Spectrum, 3, 29–35.

Vrieze, O.J., Tijs, S.H., Raghavan, T.E.S. and Filar, J.A. (1983). A finite algorithm for the switching control stochastic game. OR Spectrum, 5, 15–24.

Weyl, H. (1950). Elementary proof of a minimax theorem due to von Neumann. In Contributions to the Theory of Games, Vol. I, (H.W. Kuhn and A.W. Tucker, eds.). Ann. Math. Studies, 24. Princeton University Press, Princeton, NJ, 19–25.