Ordered Mesoporous Cobalt–Nickel Nitride Prepared by Nanocasting for Oxygen Evolution Reaction Electrocatalysis

Advanced Materials Interfaces - Tập 6 Số 20 - 2019
Ali Saad1, Zhixing Cheng1, Jing Wang1, Siqi Liu1, Minghui Yang1, Tiju Thomas2, Jiacheng Wang3
1Solid State Functional Materials Research Laboratory, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS), 315201, Ningbo, China
2Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Adyar, Chennai, 600036, Tamil Nadu, India
3State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China

Tóm tắt

AbstractTransition metal nitrides are of considerable interest for energy conversion and storage applications. Given this, synthesis of nanostructured 3D transition metal nitrides is of contemporary interest. Here, a hard templating simple and efficient pathway to synthesize 3D ordered‐mesoporous ternary nitrides NiCo2N is reported using the mesoporous silica KIT‐6 hard template. Benefitting from its large surface area and accessible pores, uniform shape, and enhanced infiltration capacity for electrolyte, mesoporous NiCo2N demonstrates superior electrode performance for oxygen evolution reaction (OER) in alkaline medium. As‐synthesized mesoporous ternary nitride NiCo2N shows desirable performance with very low overpotential (289 mV), and yields ≈10 mA cm−2 geometric current density. This is lower than the values of IrO2 and that of mesoporous binary nitrides CoN and Ni3N electrocatalysts. NiCo2N shows a small Tafel slope and smallest semicircle. Moreover, as‐synthesized NiCo2N exhibits low loss of activity after 10 h test for OER in alkaline solution. This work explores a promising way to produce OER electrocatalyst Co–Ni‐based ternary nitrides for water splitting applications.

Từ khóa


Tài liệu tham khảo

10.1002/smll.201600977

10.1007/s41918-019-00030-w

10.1021/acsnano.7b04646

10.1126/science.aaf5050

10.1021/acsami.8b15357

10.1039/C4CS00470A

10.1016/j.nanoen.2017.04.011

10.1126/science.1258307

10.1126/science.aaf1525

10.1021/ja307507a

10.1126/science.1212858

10.1002/smll.201801070

10.1038/s41467-018-06728-7

10.1021/acsnano.7b05481

10.1039/C7TA02968C

10.1002/smll.201704403

10.1016/j.progsolidstchem.2018.11.001

Tareen A. K., 2019, ChemSusChem

10.1021/ja5119495

10.1002/ange.201506480

10.1002/ente.201700108

10.1039/C9TA01347D

10.1002/smll.201700099

10.1016/j.joule.2018.08.001

10.1039/C4TA03615H

10.1039/C7TA00185A

10.1021/acsami.5b02367

10.1002/ange.201707878

10.1021/acsenergylett.6b00408

10.1021/acsami.7b11453

10.1002/adfm.200800488

10.1039/C5QI00197H

10.1039/c2nr33675h

10.1063/1.4933314

10.1021/acsaem.8b01855

10.1039/C6CY00404K

10.1021/acsami.7b02571

10.1021/acsami.8b15069

10.1002/cssc.201701456

10.1016/j.electacta.2018.04.056

10.1039/C6TA07883D

10.1021/ja4081056

10.1002/adma.200903896

10.1021/nn503760c

10.1021/acs.nanolett.6b03803

10.1002/adfm.201600566

10.1016/j.nanoen.2017.05.022

10.1021/acsnano.5b07126

10.1002/chem.201501120

10.1021/acsami.5b08420

10.1016/j.micromeso.2012.01.028

10.1016/j.snb.2005.03.016

10.1021/acs.chemmater.6b02645

10.1351/pac199163050711