Order-Sensitive Domination in Partially Ordered Sets and Graphs
Tóm tắt
For a (finite) partially ordered set (poset) P, we call a dominating set D in the comparability graph of P, an order-sensitive dominating set in P if either x ∈ D or else a < x < b in P for some a,b ∈ D for every element x in P which is neither maximal nor minimal, and denote by γos(P), the least size of an order-sensitive dominating set of P. For every graph G and integer
$$k\geqslant 2$$
, we associate to G a graded poset
$${\mathscr{P}}_{k}(G)$$
of height k, and prove that
$$\gamma _{\text {os}}({\mathscr{P}}_{3}(G))=\gamma _{\text {R}}(G)$$
and
$$\gamma _{\text {os}}({\mathscr{P}}_{4}(G))=2\gamma (G)$$
hold, where γ(G) and γR(G) are the domination and Roman domination number of G respectively. Moreover, we show that the order-sensitive domination number of a poset P exactly corresponds to the biclique vertex-partition number of the associated bipartite transformation of P.
Tài liệu tham khảo
Alon, N.: Eigenvalues and expanders. Combinatorica 6(2), 83–96 (1986)
Cockayne, E.J., Dreyer, P.A., Hedetniemi, S.M., Hedetniemi, S.T.: Roman domination in graphs. Discret. Math. 278(1), 11–22 (2004)
Duginov, O.: Partitioning the vertex set of a bipartite graph into complete bipartite subgraphs. Discret. Math. Theor. Comput. Sci. 16(3), 203–2140 (2014)
Eschen, E., Hayward, R.B., Spinrad, J., Sritharan, R.: Weakly triangulated comparability graphs. SIAM J. Comput. 29(2), 378–386 (1999)
Fleischner, H., Mujuni, E., Paulusma, D., Szeider, S.: Covering graphs with few complete bipartite subgraphs. Theor. Comput. Sci. 410, 2045–2053 (2009)
Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, USA (2010)
Hedetniemi, S.T., Rubalcaba, R.R., Slater, P.J., Walsh, M.: Few compare to the great Roman empire. Congressus Numerantium 217, 129–136 (2013)
Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory. Johns Hopkins University Press, Baltimore (1992)