Orbitopal fixing

Discrete Optimization - Tập 8 - Trang 595-610 - 2011
Volker Kaibel1, Matthias Peinhardt1, Marc E. Pfetsch2
1Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik, Universitätsplatz 2, 39106 Magdeburg, Germany
2TU Braunschweig, Institute for Mathematical Optimization, Pockelsstr. 14, 38106 Braunschweig, Germany

Tài liệu tham khảo

A. Eisenblätter, Frequency assignment in GSM networks: models, heuristics, and lower bounds, Ph.D. Thesis, TU Berlin, 2001. Chopra, 1993, The partition problem, Math. Program., 59, 87, 10.1007/BF01581239 Chopra, 1995, Facets of the k-partition polytope, Discrete Appl. Math., 61, 27, 10.1016/0166-218X(93)E0175-X Falkner, 1994, A computational study of graph partitioning, Math. Program., 66, 211, 10.1007/BF01581147 Kochenberger, 2005, Clustering of microarray data via clique partitioning, J. Comb. Optim., 10, 77, 10.1007/s10878-005-1861-1 Ferreira, 1996, Formulations and valid inequalities of the node capacitated graph partitioning problem, Math. Program., 74, 247, 10.1007/BF02592198 Ferreira, 1998, The node capacitated graph partitioning problem: a computational study, Math. Program., 81, 229, 10.1007/BF01581107 Mehrotra, 1998, Cliques and clustering: a combinatorial approach, Oper. Res. Lett., 22, 1, 10.1016/S0167-6377(98)00006-6 M.M. Sørensen, Polyhedral computations for the simple graph partitioning problem, Working Paper L-2005-02, A˚rhus School of Business, 2005. Grötschel, 1989, A cutting plane algorithm for a clustering problem, Math. Program., 45, 59, 10.1007/BF01589097 Grötschel, 1990, Facets of the clique partitioning polytope, Math. Program., 47, 367, 10.1007/BF01580870 Eisenblätter, 2002, The semidefinite relaxation of the k-partition polytope is strong, vol. 2337, 273 Ghaddar, 2011, A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem, Ann. Oper. Res., 188, 155, 10.1007/s10479-008-0481-4 Kaibel, 2008, Packing and partitioning orbitopes, Math. Program., 114, 1, 10.1007/s10107-006-0081-5 Faenza, 2009, Extended formulations for packing and partitioning orbitopes, Math. Oper. Res., 34, 686, 10.1287/moor.1090.0392 Apt, 2003 Hentenryck, 1989 Marriott, 1998 T. Achterberg, Constraint integer programming, Ph.D. Thesis, TU Berlin, 2007. Kaibel, 2007, Orbitopal fixing, vol. 4513, 74 Margot, 2002, Pruning by isomorphism in branch-and-cut, Math. Program., 94, 71, 10.1007/s10107-002-0358-2 Margot, 2003, Exploiting orbits in symmetric ILP, Math. Program., 98, 3, 10.1007/s10107-003-0394-6 Margot, 2007, Symmetric ILP: coloring and small integers, Discrete Optim., 4, 40, 10.1016/j.disopt.2006.10.008 Ostrowski, 2007, Orbital branching, vol. 4513, 106 Ostrowski, 2008, Constraint orbital branching, vol. 5035, 225 Friedman, 2007, Fundamental domains for integer programs with symmetries, vol. 4616, 146 Fahle, 2001, Symmetry breaking, vol. 2239, 93 Puget, 2005, Symmetry breaking revisited, Constraints, 10, 23, 10.1007/s10601-004-5306-8 M. Sellmann, P.V. Hentenryck, Structural symmetry breaking, in: Proccedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI, 2005, pp. 298–303. Margot, 2010, Symmetry in integer linear programming, 647 J. Ostrowski, Solving integer programs with large degrees of symmetry, Ph.D. Thesis, Lehigh University, 2009. Ostrowski, 2011, Orbital branching, Math. Program., 126, 147, 10.1007/s10107-009-0273-x SCIP, Solving constraint integer programs. http://scip.zib.de/. Margot, 2003, Small covering designs by branch-and-cut, Math. Program., 94, 207, 10.1007/s10107-002-0316-z McKay, 1981, Practical graph isomorphism, Congr. Numer., 30, 45 Achterberg, 2007, Conflict analysis in mixed integer programming, Discrete Optim., 4, 4, 10.1016/j.disopt.2006.10.006