Orbitopal fixing
Tài liệu tham khảo
A. Eisenblätter, Frequency assignment in GSM networks: models, heuristics, and lower bounds, Ph.D. Thesis, TU Berlin, 2001.
Chopra, 1993, The partition problem, Math. Program., 59, 87, 10.1007/BF01581239
Chopra, 1995, Facets of the k-partition polytope, Discrete Appl. Math., 61, 27, 10.1016/0166-218X(93)E0175-X
Falkner, 1994, A computational study of graph partitioning, Math. Program., 66, 211, 10.1007/BF01581147
Kochenberger, 2005, Clustering of microarray data via clique partitioning, J. Comb. Optim., 10, 77, 10.1007/s10878-005-1861-1
Ferreira, 1996, Formulations and valid inequalities of the node capacitated graph partitioning problem, Math. Program., 74, 247, 10.1007/BF02592198
Ferreira, 1998, The node capacitated graph partitioning problem: a computational study, Math. Program., 81, 229, 10.1007/BF01581107
Mehrotra, 1998, Cliques and clustering: a combinatorial approach, Oper. Res. Lett., 22, 1, 10.1016/S0167-6377(98)00006-6
M.M. Sørensen, Polyhedral computations for the simple graph partitioning problem, Working Paper L-2005-02, A˚rhus School of Business, 2005.
Grötschel, 1989, A cutting plane algorithm for a clustering problem, Math. Program., 45, 59, 10.1007/BF01589097
Grötschel, 1990, Facets of the clique partitioning polytope, Math. Program., 47, 367, 10.1007/BF01580870
Eisenblätter, 2002, The semidefinite relaxation of the k-partition polytope is strong, vol. 2337, 273
Ghaddar, 2011, A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem, Ann. Oper. Res., 188, 155, 10.1007/s10479-008-0481-4
Kaibel, 2008, Packing and partitioning orbitopes, Math. Program., 114, 1, 10.1007/s10107-006-0081-5
Faenza, 2009, Extended formulations for packing and partitioning orbitopes, Math. Oper. Res., 34, 686, 10.1287/moor.1090.0392
Apt, 2003
Hentenryck, 1989
Marriott, 1998
T. Achterberg, Constraint integer programming, Ph.D. Thesis, TU Berlin, 2007.
Kaibel, 2007, Orbitopal fixing, vol. 4513, 74
Margot, 2002, Pruning by isomorphism in branch-and-cut, Math. Program., 94, 71, 10.1007/s10107-002-0358-2
Margot, 2003, Exploiting orbits in symmetric ILP, Math. Program., 98, 3, 10.1007/s10107-003-0394-6
Margot, 2007, Symmetric ILP: coloring and small integers, Discrete Optim., 4, 40, 10.1016/j.disopt.2006.10.008
Ostrowski, 2007, Orbital branching, vol. 4513, 106
Ostrowski, 2008, Constraint orbital branching, vol. 5035, 225
Friedman, 2007, Fundamental domains for integer programs with symmetries, vol. 4616, 146
Fahle, 2001, Symmetry breaking, vol. 2239, 93
Puget, 2005, Symmetry breaking revisited, Constraints, 10, 23, 10.1007/s10601-004-5306-8
M. Sellmann, P.V. Hentenryck, Structural symmetry breaking, in: Proccedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI, 2005, pp. 298–303.
Margot, 2010, Symmetry in integer linear programming, 647
J. Ostrowski, Solving integer programs with large degrees of symmetry, Ph.D. Thesis, Lehigh University, 2009.
Ostrowski, 2011, Orbital branching, Math. Program., 126, 147, 10.1007/s10107-009-0273-x
SCIP, Solving constraint integer programs. http://scip.zib.de/.
Margot, 2003, Small covering designs by branch-and-cut, Math. Program., 94, 207, 10.1007/s10107-002-0316-z
McKay, 1981, Practical graph isomorphism, Congr. Numer., 30, 45
Achterberg, 2007, Conflict analysis in mixed integer programming, Discrete Optim., 4, 4, 10.1016/j.disopt.2006.10.006