Orbital angular momentum holography for high-security encryption

Nature Photonics - Tập 14 Số 2 - Trang 102-108 - 2020
Xinyuan Fang1, Haoran Ren2, Miṅ Gu1
1Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
2Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, Victoria, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bragg, W. L. The X-ray microscope. Nature 149, 470–471 (1942).

Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

Sur, B., Rogge, R. B., Hammond, R. P., Anghel, V. N. P. & Katsaras, J. Atomic structure holography using thermal neutrons. Nature 414, 525–527 (2001).

Denisyuk, Y. N. The manifestation of the optical properties of an object in the wave field of the radiation it scatters. Dokl. Akad. Nauk SSSR 144, 1275–1278 (1962).

Leith, E. N. & Upatnieks, J. Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123–1130 (1962).

Ozaki, M., Kato, J. & Kawata, S. Surface-plasmon holography with white-light illumination. Science 332, 218–220 (2011).

Mueller, J. P. B., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017).

Wen, D. D. et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 6, 8241 (2015).

Li, X. P. et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat. Commun. 6, 6984 (2015).

Li, X. et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016).

Lim, K. T. P., Liu, H., Liu, Y. & Yang, J. K. W. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat. Commun. 10, 25 (2019).

Shen, X. A., Nguyen, A. D., Perry, J. W., Huestis, D. L. & Kachru, R. Time-domain holographic digital memory. Science 278, 96–100 (1997).

Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).

Ren, H. R., Li, X. P., Zhang, Q. M. & Gu, M. On-chip noninterference angular momentum multiplexing of broadband light. Science 352, 805–809 (2016).

Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).

Hemsing, E., Marinelli, A. & Rosenzweig, J. B. Generating optical orbital angular momentum in a high-gain free-electron laser at the first harmonic. Phys. Rev. Lett. 106, 164803 (2011).

Goodman, J. W. Introduction to Fourier Optics (Roberts & Company, 2005).

Gu, M. Advanced Optical Imaging Theory (Springer Verlag, 2000).

Yang, Y. & Blake, R. Broad tuning for spatial frequency of neural mechanisms underlying visual perception of coherent motion. Nature 371, 793–796 (1994).

Gibbs, A. J. & Rowe, A. J. Reconstruction of images from transforms by an optical method. Nature 246, 509–511 (1973).

Zernike, F. Phase contrast, a new method for the microscopic observation of transparent objects: Part II. Physica 9, 974–986 (1942).

Kotlyar, V. V., Kovalev, A. A. & Porfirev, A. P. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl. Opt. 56, 4095–4104 (2017).

Li, J. X. et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci. Adv. 4, eaar6768 (2018).

Jin, L. et al. Noninterleaved metasurface for (26 – 1) spin- and wavelength-encoded holograms. Nano Lett. 18, 8016–8024 (2018).

Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).

Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016).

Smalley, D. E. et al. A photophoretic-trap volumetric display. Nature 553, 486–490 (2018).

Rosen, J. & Brooker, G. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photon. 2, 190–195 (2008).

Heanue, J. F., Bashaw, M. C. & Hesselink, L. Volume holographic storage and retrieval of digital data. Science 265, 749–752 (1994).

Hesselink, L. et al. Photorefractive materials for nonvolatile volume holographic data storage. Science 282, 1089–1094 (1998).

Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

Psaltis, D., Brady, D., Gu, X. G. & Lin, S. Holography in artificial neural networks. Nature 343, 325–330 (1990).

Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

Chrapkiewicz, R., Jachura, M., Banaszek, K. & Wasilewski, W. Hologram of a single photon. Nat. Photon. 10, 576–579 (2016).