Orbital Physics of Perovskites for the Oxygen Evolution Reaction

Topics in Catalysis - Tập 61 - Trang 267-275 - 2018
Ryan Sharpe1, Julen Munarriz2, Tingbin Lim1, Yunzhe Jiao1, J. W. Niemantsverdriet1,3, Victor Polo2, Jose Gracia1,3
1SynCat@Beijing, Synfuels China Technology Co. Ltd., Beijing-Huairou, People’s Republic of China
2Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
3SynCat@Differ, Syngaschem BV, Eindhoven, The Netherlands

Tóm tắt

The study of magnetic perovskite oxides has led to novel and very active compounds for O2 generation and other energy applications. Focusing on three different case studies, we summarise the bulk electronic and magnetic properties that initially serve to classify active perovskite catalysts for the oxygen evolution reaction (OER). Ab-initio calculations centred on the orbital physics of the electrons in the d-shell provide a unique insight into the complex interplay between spin dependent interactions versus selectivity and OER reactivity that occurs in these transition-metal oxides. We analyse how the spin, orbital and lattice degrees of freedom establish rational design principles for OER. We observe that itinerant magnetism serves as an indicator for highly active oxygen electro-catalysts. Optimum active sites individually have a net magnetic moment, giving rise to exchange interactions which are collectively ferromagnetic, indicative of spin dependent transport. In particular, optimum active sites for OER need to possess sufficient empty orthogonal orbitals, oriented towards the ligands, to preserve an incoming spin aligned electron flow. Calculations from first principles open up the possibility of anticipating materials with improved electro-catalytic properties, based on orbital engineering.

Tài liệu tham khảo

Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith SJ, Janetos A, Edmonds J (2009) Science 324:1183–1186 Armand M, Tarascon J-M (2008) Nature 451:652–657 Koper MTM (2011) J Electroanal Chem 660:254–260 Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J (2014) ACS Catal 4:2917–2940 Gracia J, Escuin M, Mallada R, Navascues N, Santamaria J (2016) Nano Energy 20:20–28 Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) Science 334:1383–1385 Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) J Phys Chem Lett 3:399–404 Grimaud A, May KJ, Carlton CE, Lee Y-L, Risch M, Hong WT, Zhou J, Shao-Horn Y (2013) Nat Commun 4:2439 Jung J-I, Jeong HY, Lee J-S, Kim MG, Cho J (2014) Angew Chem Int Ed Engl 53:4582–4586 Zhao B, Zhang L, Zhen D, Yoo S, Ding Y, Chen D, Chen Y, Zhang Q, Doyle B, Xiong X, Liu M (2017) Nat Commun 8:14586 Sapountzi FM, Gracia JM, Westrate CJ, Fredriksson HOA, Niemantsverdriet JW (2017) Prog Energy Combust Sci 58:1–35 Terasaki I, Kobayashi W (2007) Prog Solid State Chem 35:439–445 Matsumoto Y, Sato E (1986) Mater Chem Phys 14:397–426 Bockris JO, Otagawa T (1984) J Electrochem Soc 131:290 Arnold EW, Sundaresan S (1987) Chem Eng Commun 58:213–230 Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) ChemCatChem 3:1159–1165 Vojvodic A, Norskov J (2011) Science 334:1355–1356 Gracia J (2017) Phys Chem Chem Phys 19:20451–20456 Lim T, Niemantsverdriet JW, Gracia J (2016) ChemCatChem 8:2968–2974 Sharpe R, Lim T, Jiao Y, Niemantsverdriet JW, Gracia J (2016) ChemCatChem 8:3762–3768 Gracia J, Munarriz J, Polo V, Sharpe R, Jiao Y, Niemantsverdriet JW, Lim T (2017) ChemCatChem. https://doi.org/10.1002/cctc.201700302 Guo Y, Tong Y, Chen P, Xu K, Zhao J, Lin Y, Chu W, Peng Z, Wu C, Xie Y (2015) Adv Mater 27:5989–5994 Goodenough JB (2004) Rep Prog Phys 67:1915–1993 Lin JJ, Huang SM, Lin YH, Lee TC, Liu H, Zhang XX, Chen RS, Huang YS (2004) J Phys: Condens Matter 16:8035–8041 Mizumaki M, Chen WT, Saito T, Yamada I, Attfield JP, Shimakawa Y (2011) Phys Rev B 84:94418 Shimakawa Y, Takano M (2009) Z Anorg Allg Chem 635:1882–1889 Yamada I (2014) J Ceram Soc Jpn 122:846–851 Hombo J, Matsumoto Y, Kawano T (1990) J Solid State Chem 84:138–143 Takeda Y, Naka S, Takano M, Shinjo T, Takada T, Shimada M (1978) Mater Res Bull 13:61–66 Takano M, Nakanishi N, Takeda Y, Naka S, Takada T (1977) Mater Res Bull 12:923–928 Takeda T, Yamaguchi Y, Watanabe H (1972) J Phys Soc Jpn 33:967–969 Alexandrov VE, Kotomin EA, Maier J, Evarestov RA (2008) J Chem Phys 129:214704 Torrance J, Lacorre P, Nazzal A, Ansaldo E, Niedermayer C (1992) Phys Rev B 45:8209–8212 Hong WT, Welsch RE, Shao-Horn Y (2016) J Phys Chem C 120:78–86 Zhu M, Komissinskiy P, Radetinac A, Vafaee M, Wang Z, Alff L (2013) Appl Phys Lett 103:141902 Goodenough JB, Zhou J-S (1998) Chem Mater 10:2980–2993 Rodríguez-Carvajal J, Rosenkranz S, Medarde M, Lacorre P, Fernandez-Díaz M, Fauth F, Trounov V (1998) Phys Rev B 57:456–464 Alonso JA, Martínez-Lope MJ, Rasines I (1995) J Solid State Chem 120:170–174 Prodi A, Gilioli E, Cabassi R, Bolzoni F, Licci F, Huang Q, Lynn JW, Affronte M, Gauzzi A, Marezio M (2009) Phys Rev B 79:85105 Liu XJ, Lv SH, Pan E, Meng J, Albrecht JD (2010) J Phys Condens Matter 22:246001 Yamada I, Fujii H, Takamatsu A, Ikeno H, Wada K, Tsukasaki H, Kawaguchi S, Mori S, Yagi S (2017) Adv Mater 29:1603004 Johnson RD, Chapon LC, Khalyavin DD, Manuel P, Radaelli PG, Martin C (2012) Phys Rev Lett 108:67201 Perks NJ, Johnson RD, Martin C, Chapon LC, Radaelli PG (2012) Nat Commun 3:1277 Musa Saad H-E M (2017) J Sci Adv Mater Devices 2:115–122 Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269 Kresse G, Hafner J (1993) Phys Rev B 47:558–561 Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186 Blöchl PE (1994) Phys Rev B 50:17953–17979 Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775 Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Phys Rev Lett 100:136406 Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505–1509 Momma K, Izumi F (2011) J Appl Crystallogr 44:1272–1276 Yamada I, Shiro K, Etani H, Marukawa S, Hayashi N, Mizumaki M, Kusano Y, Ueda S, Abe H, Irifune T (2014) Inorg Chem 53:10563–10569 Li Z, Tse JS, You S, Jin CQ, Iitaka T (2011) Int J Mod Phys B 25:3409–3414 Wang L, Maxisch T, Ceder G (2006) Phys Rev B 73:195107