Orbital Physics of Perovskites for the Oxygen Evolution Reaction
Tóm tắt
The study of magnetic perovskite oxides has led to novel and very active compounds for O2 generation and other energy applications. Focusing on three different case studies, we summarise the bulk electronic and magnetic properties that initially serve to classify active perovskite catalysts for the oxygen evolution reaction (OER). Ab-initio calculations centred on the orbital physics of the electrons in the d-shell provide a unique insight into the complex interplay between spin dependent interactions versus selectivity and OER reactivity that occurs in these transition-metal oxides. We analyse how the spin, orbital and lattice degrees of freedom establish rational design principles for OER. We observe that itinerant magnetism serves as an indicator for highly active oxygen electro-catalysts. Optimum active sites individually have a net magnetic moment, giving rise to exchange interactions which are collectively ferromagnetic, indicative of spin dependent transport. In particular, optimum active sites for OER need to possess sufficient empty orthogonal orbitals, oriented towards the ligands, to preserve an incoming spin aligned electron flow. Calculations from first principles open up the possibility of anticipating materials with improved electro-catalytic properties, based on orbital engineering.
Tài liệu tham khảo
Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith SJ, Janetos A, Edmonds J (2009) Science 324:1183–1186
Armand M, Tarascon J-M (2008) Nature 451:652–657
Koper MTM (2011) J Electroanal Chem 660:254–260
Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J (2014) ACS Catal 4:2917–2940
Gracia J, Escuin M, Mallada R, Navascues N, Santamaria J (2016) Nano Energy 20:20–28
Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) Science 334:1383–1385
Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) J Phys Chem Lett 3:399–404
Grimaud A, May KJ, Carlton CE, Lee Y-L, Risch M, Hong WT, Zhou J, Shao-Horn Y (2013) Nat Commun 4:2439
Jung J-I, Jeong HY, Lee J-S, Kim MG, Cho J (2014) Angew Chem Int Ed Engl 53:4582–4586
Zhao B, Zhang L, Zhen D, Yoo S, Ding Y, Chen D, Chen Y, Zhang Q, Doyle B, Xiong X, Liu M (2017) Nat Commun 8:14586
Sapountzi FM, Gracia JM, Westrate CJ, Fredriksson HOA, Niemantsverdriet JW (2017) Prog Energy Combust Sci 58:1–35
Terasaki I, Kobayashi W (2007) Prog Solid State Chem 35:439–445
Matsumoto Y, Sato E (1986) Mater Chem Phys 14:397–426
Bockris JO, Otagawa T (1984) J Electrochem Soc 131:290
Arnold EW, Sundaresan S (1987) Chem Eng Commun 58:213–230
Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) ChemCatChem 3:1159–1165
Vojvodic A, Norskov J (2011) Science 334:1355–1356
Gracia J (2017) Phys Chem Chem Phys 19:20451–20456
Lim T, Niemantsverdriet JW, Gracia J (2016) ChemCatChem 8:2968–2974
Sharpe R, Lim T, Jiao Y, Niemantsverdriet JW, Gracia J (2016) ChemCatChem 8:3762–3768
Gracia J, Munarriz J, Polo V, Sharpe R, Jiao Y, Niemantsverdriet JW, Lim T (2017) ChemCatChem. https://doi.org/10.1002/cctc.201700302
Guo Y, Tong Y, Chen P, Xu K, Zhao J, Lin Y, Chu W, Peng Z, Wu C, Xie Y (2015) Adv Mater 27:5989–5994
Goodenough JB (2004) Rep Prog Phys 67:1915–1993
Lin JJ, Huang SM, Lin YH, Lee TC, Liu H, Zhang XX, Chen RS, Huang YS (2004) J Phys: Condens Matter 16:8035–8041
Mizumaki M, Chen WT, Saito T, Yamada I, Attfield JP, Shimakawa Y (2011) Phys Rev B 84:94418
Shimakawa Y, Takano M (2009) Z Anorg Allg Chem 635:1882–1889
Yamada I (2014) J Ceram Soc Jpn 122:846–851
Hombo J, Matsumoto Y, Kawano T (1990) J Solid State Chem 84:138–143
Takeda Y, Naka S, Takano M, Shinjo T, Takada T, Shimada M (1978) Mater Res Bull 13:61–66
Takano M, Nakanishi N, Takeda Y, Naka S, Takada T (1977) Mater Res Bull 12:923–928
Takeda T, Yamaguchi Y, Watanabe H (1972) J Phys Soc Jpn 33:967–969
Alexandrov VE, Kotomin EA, Maier J, Evarestov RA (2008) J Chem Phys 129:214704
Torrance J, Lacorre P, Nazzal A, Ansaldo E, Niedermayer C (1992) Phys Rev B 45:8209–8212
Hong WT, Welsch RE, Shao-Horn Y (2016) J Phys Chem C 120:78–86
Zhu M, Komissinskiy P, Radetinac A, Vafaee M, Wang Z, Alff L (2013) Appl Phys Lett 103:141902
Goodenough JB, Zhou J-S (1998) Chem Mater 10:2980–2993
Rodríguez-Carvajal J, Rosenkranz S, Medarde M, Lacorre P, Fernandez-Díaz M, Fauth F, Trounov V (1998) Phys Rev B 57:456–464
Alonso JA, Martínez-Lope MJ, Rasines I (1995) J Solid State Chem 120:170–174
Prodi A, Gilioli E, Cabassi R, Bolzoni F, Licci F, Huang Q, Lynn JW, Affronte M, Gauzzi A, Marezio M (2009) Phys Rev B 79:85105
Liu XJ, Lv SH, Pan E, Meng J, Albrecht JD (2010) J Phys Condens Matter 22:246001
Yamada I, Fujii H, Takamatsu A, Ikeno H, Wada K, Tsukasaki H, Kawaguchi S, Mori S, Yagi S (2017) Adv Mater 29:1603004
Johnson RD, Chapon LC, Khalyavin DD, Manuel P, Radaelli PG, Martin C (2012) Phys Rev Lett 108:67201
Perks NJ, Johnson RD, Martin C, Chapon LC, Radaelli PG (2012) Nat Commun 3:1277
Musa Saad H-E M (2017) J Sci Adv Mater Devices 2:115–122
Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269
Kresse G, Hafner J (1993) Phys Rev B 47:558–561
Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186
Blöchl PE (1994) Phys Rev B 50:17953–17979
Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775
Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Phys Rev Lett 100:136406
Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505–1509
Momma K, Izumi F (2011) J Appl Crystallogr 44:1272–1276
Yamada I, Shiro K, Etani H, Marukawa S, Hayashi N, Mizumaki M, Kusano Y, Ueda S, Abe H, Irifune T (2014) Inorg Chem 53:10563–10569
Li Z, Tse JS, You S, Jin CQ, Iitaka T (2011) Int J Mod Phys B 25:3409–3414
Wang L, Maxisch T, Ceder G (2006) Phys Rev B 73:195107