Orbifolds of lattice vertex algebras
Tóm tắt
Từ khóa
Tài liệu tham khảo
T. Abe, G. Buhl and C. Dong, Rationality, regularity, and C2-cofiniteness, Trans. Amer. Math. Soc., 356 (2004), 3391–3402.
B. Bakalov and J. Elsinger, Orbifolds of lattice vertex algebras under an isometry of order two, J. Algebra, 441 (2015), 57–83.
B. Bakalov and V.G. Kac, Twisted modules over lattice vertex algebras, In: Lie Theory and Its Applications in Physics V, World Sci. Publ., River Edge, NJ, 2004, pp. 3–26.
B. Bakalov and A. Kirillov, Jr., Lectures on Tensor Categories and Modular Functors, Univ. Lecture Ser., 21, Amer. Math. Soc., Providence, RI, 2001.
B. Bakalov and T. Milanov, W-constraints for the total descendant potential of a simple singularity, Compos. Math., 149 (2013), 840–888.
B. Bakalov and M. Sullivan, Twisted logarithmic modules of lattice vertex algebras, Trans. Amer. Math. Soc., 371 (2019), 7995–8027.
R.E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A., 83 (1986), 3068–3071.
S. Carnahan and M. Miyamoto, Regularity of fixed-point vertex operator subalgebras, preprint, arXiv:1603.05645.
R. Dijkgraaf, C. Vafa, E. Verlinde and H. Verlinde, The operator algebra of orbifold models, Comm. Math. Phys., 123 (1989), 485–526.
C. Dong, Twisted modules for vertex algebras associated with even lattices, J. Algebra, 165 (1994), 91–112.
C. Dong, X. Jiao and F. Xu, Quantum dimensions and quantum Galois theory, Trans. Amer. Math. Soc., 365 (2013), 6441–6469.
C. Dong and J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, Progr. Math., 112, Birkhäuser Boston, Boston, MA, 1993.
C. Dong, H. Li and G. Mason, Regularity of rational vertex operator algebra, Adv. Math., 312 (1997), 148–166.
C. Dong, H. Li and G. Mason, Twisted representations of vertex operator algebras, Math. Ann., 310 (1998), 571–600.
C. Dong and K. Nagatomo, Representations of vertex operator algebra V+L for rank one lattice L, Comm. Math. Phys., 202 (1999), 169–195.
C. Dong, F. Xu and N. Yu, 2-cyclic permutations of lattice vertex operator algebras, Proc. Amer. Math. Soc., 144 (2016), 3207–3220.
C. Dong, F. Xu and N. Yu, 2-permutations of lattice vertex operator algebras: higher rank, J. Algebra, 476 (2017), 1–25.
C. Dong, F. Xu and N. Yu, The 3-permutation orbifold of a lattice vertex operator algebra, J. Pure Appl. Algebra, 222 (2018), 1316–1336.
J. Elsinger, Classification of orbifold modules under an automorphism of order two, Ph.D. dissertation, 2014, North Carolina State Univ., http://www.lib.ncsu.edu/resolver/1840.16/9824.
J. Elsinger, Quantum dimensions and fusion products for irreducible VσQ-modules with σ2 = 1, Comm. Algebra, 45 (2017), 3091–3109.
P. Etingof, D. Nikshich and V. Ostrik, On fusion categories, Ann. of Math. (2), 162 (2005), 581–642.
A.J. Feingold, I.B. Frenkel and J.F.X. Ries, Spinor Construction of Vertex Operator Algebras, Triality, and Contemp. Math., 121, Amer. Math. Soc., Providence, RI, 1991.
E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Math. Surveys Monogr., 88, Amer. Math. Soc., Providence, RI, 2001; 2nd ed., 2004.
I.B. Frenkel, Y.-Z. Huang and J. Lepowsky, On Axiomatic Approaches to Vertex Operator Algebras and Modules, Mem. Amer. Math. Soc., 104, no. 494, 1993.
I.B. Frenkel and V.G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math., 62 (1980), 23–66.
I.B. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Pure Appl. Math., 134, Academic Press, Boston, MA, 1988.
Y.-Z. Huang, Vertex operator algebras and the Verlinde conjecture, Commun. Contemp. Math., 10 (2008), 103–154.
Y.-Z. Huang, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math., 10 (2008), 871–911.
V.G. Kac, Vertex Algebras for Beginners, Univ. Lecture Ser., 10, Amer. Math. Soc., Providence, RI, 1996; 2nd ed., 1998.
V.G. Kac and D.H. Peterson, 112 constructions of the basic representation of the loop group of E8, In: Symposium on Anomalies, Geometry, Topology, World Sci. Publ., Singapore, 1985, pp. 276–298.
V.G. Kac and D.H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math., 53 (1984), 125–264.
V.G. Kac, A.K. Raina and N. Rozhkovskaya, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras. 2nd ed., Adv. Ser. Math. Phys., 29, World Sci. Publ., Hackensack, NJ, 2013.
V.G. Kac and I.T. Todorov, Affine orbifolds and rational conformal field theory extensions of W1+∞, Comm. Math. Phys., 190 (1997), 57–111.
J. Lepowsky, Calculus of twisted vertex operators, Proc. Nat. Acad. Sci. U.S.A., 82 (1985), 8295–8299.
J. Lepowsky and H. Li, Introduction to vertex operator algebras and their representations, Progr. Math., 227, Birkhäuser Boston, Boston, MA, 2004.
H.-S. Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, In: Moonshine, the Monster, and Related Topics, Contemp. Math., 193, Amer. Math. Soc., Providence, RI, 1996, pp. 203–236.
E. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nuclear Phys. B, 300 (1988), 360–376.