Lý thuyết Gromov-Witten của các phép thổi phồng có trọng số

Science China Mathematics - Tập 63 - Trang 2475-2522 - 2020
Bohui Chen1, Cheng-Yong Du2, Rui Wang3
1Department of Mathematics and Yangtze Center of Mathematics, Sichuan University, Chengdu, China
2School of Mathematical Sciences and V. C. & V. R. Key Lab, Sichuan Normal University, Chengdu, China
3Department of Mathematics, University of California, Berkeley, Berkeley, USA

Tóm tắt

Xem xét một nhóm nhóm con-đĩa symplectic S của một nhóm nhóm-đĩa symplectic (X, ω) có kích thước hữu hạn. Đặt Xa là phép thổi phồng trọng số-a của X dọc theo S, và Da = PNa là divisor ngoại lệ, trong đó N là bụng bình thường của S trong X. Trong bài viết này, chúng tôi chỉ ra rằng lý thuyết Gromov-Witten đĩa tuyệt đối của Xα có thể được tái cấu trúc một cách hiệu quả và độc nhất từ lý thuyết Gromov-Witten đĩa tuyệt đối của X, S và Dα, homomorphism hạn chế tự nhiên H*CR(X) → H*CR(S) và lớp Chern đầu tiên của gói line tautological trên Dα. Để đạt được điều này, chúng tôi trước tiên chứng minh các kết quả tương tự cho các lý thuyết Gromov-Witten đĩa tương đối của (Xα | Dα) và (Nα | Dα). Làm ứng dụng cho các kết quả này, chúng tôi chứng minh một phiên bản đĩa của giả thuyết của Maulik và Pandharipande (Topology, 2006) về lý thuyết Gromov-Witten của các phép thổi phồng dọc theo các giao diện hoàn chỉnh, một giả thuyết về lý thuyết Gromov-Witten của các cấu trúc gốc và một giả thuyết về kết quả Leray-Hirsch cho lý thuyết Gromov-Witten đĩa của Tseng và You (J Pure Appl Algebra, 2016).

Từ khóa


Tài liệu tham khảo

Abramovich D, Fantechi B. Orbifold techniques in degeneration formulas. Ann Sc Norm Super Pisa Cl Sci (5), 2016, 16: 519–579 Adem A, Leida J, Ruan Y. Orbifolds and Stringy Topology. Cambridge: Cambridge University Press, 2007 Andreini E, Jiang Y, Tseng H-H. Gromov-Witten theory of banded gerbes over schemes. arXiv:1101.5996, 2011 Andreini E, Jiang Y, Tseng H-H. Gromov-Witten theory of root gerbes I: Structure of genus 0 moduli spaces. J Differential Geom, 2015, 99: 1–45 Andreini E, Jiang Y, Tseng H-H. Gromov-Witten theory of product stacks. Comm Anal Geom, 2016, 24: 223–277 Bott R, Tu L. Differential Forms in Algebraic Topology. New York: Springer-Verlag, 1982 Chen B, Du C-Y, Hu J. Weighted-blowup correspondence of orbifold Gromov-Witten invariants and applications. Math Ann, 2019, 374: 1459–1523 Chen B, Du C-Y, Wang R. The groupoid structure of groupoid morphisms. J Geom Phys, 2019, 145: 103486 Chen B, Du C-Y, Wang R. Double ramification cycles with orbifold targets. arXiv:2008.06484, 2020 Chen B, Du C-Y, Wang Y. On fibrations of Lie groupoids. J Geom Phys, 2020, 152: 103644 Chen B, Hu S. A deRham model for Chen-Ruan cohomology ring of abelian orbifolds. Math Ann, 2006, 336: 51–71 Chen B, Li A-M. Symplectic virtual localization of Gromov-Witten invariants. arXiv:0610370, 2006 Chen B, Li A-M, Sun S, et al. Relative orbifold Gromov-Witten theory and degeneration formula. arXiv:1110.6803, 2011 Chen B, Li A-M, Wang B-L. Gluing principle for orbifold stratified spaces. In: Geometry and Topology of Manifolds. Springer Proceedings in Mathematics & Statistics, vol. 154. Tokyo: Springer, 2016, 15–58 Chen W, Ruan Y. Orbifold Gromov-Witten theory. Contemp Math, 2002, 310: 25–86 Chen W, Ruan Y. A new cohomology theory for orbifold. Comm Math Phys, 2004, 248: 1–31 Du C Y. Relative Gromov-Witten invariants of projective completions of vector bundles. Sci China Math, 2019, 62: 1429–1438 Du C-Y, Chen B, Wang R. Symplectic neighborhood theorem for symplectic orbifold groupoids (in Chinese). Acta Math Sinica Chin Ser, 2018, 61: 217–232 Fan H. Chern classes and Gromov-Witten theory of projective bundles. Amer J Math, 2020, in press Graber T, Pandharipande R. Localization of virtual classes. Invent Math, 1999, 135: 487–518 Graber T, Vakil R. Relative virtual localization and vanishing of tautological classes on moduli spaces of curves. Duke Math J, 2005, 130: 1–37 Guillemin V, Sternberg S. Birational equivalence in the symplectic category. Invent Math, 1989, 97: 485–522 Hu J, Li T-J, Ruan Y. Birational cobordism invariance of uniruled symplectic manifolds. Invent Math, 2008, 172: 231–275 Hu J, Ruan Y. Positive divisors in symplectic geometry. Sci China Math, 2013, 56: 1129–1144 Hu J, Wang B-L. Delocalized Chern character for stringy orbifold K-theory. Trans Amer Math Soc, 2013, 365: 6309–6341 Janda F, Pandharipande R, Pixton A, et al. Double ramification cycles on the moduli spaces of curves. Publ Math Inst Hautes Études Sci, 2017, 125: 221–266 Janda F, Pandharipande R, Pixton A, et al. Double ramification cycles with target varieties. arXiv:1812.10136, 2018 Katz E. An algebraic formalism for symplectic field theory. J Symplectic Geom, 2007, 5: 385–437 Kollár J. Low degree polynomial equations: Arithmetic, geometry and topology. In: European Congress of Mathematics, Volume. I. Progress in Mathematics, vol. 168. Basel: Birkhäuser, 1998, 255–288 Kontsevich M. Intersection theory on the moduli space of curves and the matrix Airy function. Comm Math Phys, 1992, 147: 1–23 Kontsevich M. Enumeration of rational curves via torus action. In: The Moduli Space of Curves. Basel: Birkhäuser, 1995, 335–368 Li T-J, Ruan Y. Symplectic birational geometry. In: New Perspectives and Challenges in Symplectic Field Theory. CRM Proceedings & Lecture Notes, vol. 49. Providence: Amer Math Soc, 2009, 307–326 Liu C-C M. Localization in Gromov-Witten theory and orbifold Gromov-Witten theory. In: Handbook of Moduli, Volume. II. Advanced Lectures in Mathematics (ALM), vol. 25. Beijing: International Press and Higher Education Press, 2013, 353–425 Maulik D, Pandharipande R. A topological view of Gromov-Witten theory. Topology, 2006, 45: 887–918 Moerdijk I, Mrčun J. Introduction to foliations and Lie groupoids. Cambridge: Cambridge University Press, 2003 Moerdijk I, Pronk D A. Orbifolds, sheaves and groupoids. K-Theory, 1997, 12: 3–21 Ruan Y. Virtual neighborhoods and pseudo-holomorphic curves. Turkish J Math, 1999, 23: 161–231 Satake I. On a generalization of the notion of manifold. Proc Natl Acad Sci USA, 1956, 42: 359–363 Tang X, Tseng H-H. A quantum Leray-Hirsch theorem for banded gerbes. J Differential Geom, 2020, in press Tian Z. Symplectic geometry of rationally connected threefolds. Duke Math J, 2012, 161: 803–843 Tian Z. Symplectic geometry and rationally connected 4-folds. J Reine Angew Math, 2015, 2015: 221–244 Tseng H-H. Orbifold quantum Riemann-Roch, Lefschetz, and Serre. Geom Topol, 2010, 14: 1–81 Tseng H-H. On the geometry of orbifold Gromov-Witten invariants. In: Proceedings of the Seventh International Congress of Chinese Mathematicians, Volume. I. Advanced Lectures in Mathematics (ALM), vol. 43. Boston: International Press, 2019, 439–456 Tseng H-H, You F. On orbifold Gromov-Witten theory in codimension one. J Pure Appl Algebra, 2016, 220: 3567–3571 Tseng H-H, You F. Double ramification cycles on the moduli spaces of admissible covers. arXiv:1606.03770, 2016 Voisin C. Rationally connected 3-folds and symplectic geometry. Astáerisque, 2008, 322: 1–21 Witten E. Two dimensional gravity and intersection theory on moduli space. Surv Differ Geom, 1991, 1: 243–310