Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khả năng sinh khả dụng qua đường miệng tiết lộ sự ước lượng quá mức về độc tính của các hydrocarbon thơm đa vòng trong phần tử bụi khí quyển
Tóm tắt
Các hydrocarbon thơm đa vòng (PAHs) trong bụi khí quyển có tác động tiêu cực đến sức khỏe con người, tuy nhiên các nồng độ PAH tổng cộng nên ước lượng quá mức độ độc hại so với lượng PAH sinh khả dụng. Để khám phá giả thuyết này, chúng tôi đã đo lường khả năng sinh khả dụng qua đường miệng của PAHs trong vitro trong bụi có đường kính khí động học nhỏ hơn 10 µm (PM10) bằng cách sử dụng một thử nghiệm bắt chước hệ tiêu hóa của con người. Thử nghiệm này kết hợp việc sử dụng các dịch tiêu hóa mô phỏng và một màng thẩm thấu để mô phỏng sự hấp thụ ở ruột. Kết quả cho thấy khả năng sinh khả dụng PAH qua đường miệng thấp hơn 5%, với fluorene, anthracene, acenaphthene và phenanthrene là những PAH có khả năng sinh khả dụng cao nhất. Dữ liệu cho thấy không có nguy cơ gây ung thư của PM10-bound PAHs có khả năng sinh khả dụng qua đường miệng sau một đánh giá nguy cơ sức khỏe qua hít thở-nuốt bằng cách sử dụng nồng độ gây ung thư tương đương benzo(a)pyrene và các chỉ số nguy cơ. Theo hiểu biết tốt nhất của chúng tôi, đây là nghiên cứu đầu tiên ước lượng khả năng sinh khả dụng qua đường miệng của PAHs liên quan đến PM10.
Từ khóa
#PAHs #bụi khí quyển #khả năng sinh khả dụng #độc tính #sức khỏe con ngườiTài liệu tham khảo
Abdel-Shafy HI, Mansour MSMM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123. https://doi.org/10.1016/j.ejpe.2015.03.011
Boisa N, Elom N, Dean JR et al (2014) Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10 size fraction of soil. Environ Int 70:132–142. https://doi.org/10.1016/j.envint.2014.05.021
Bradham KD, Laird BD, Rasmussen PE et al (2014) Assessing the bioavailability and risk from metal-contaminated soils and dusts. Hum Ecol Risk Assess 20:272–286. https://doi.org/10.1080/10807039.2013.802633
Burnett R, Chen H, Szyszkowicz M et al (2018) Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1803222115
Collins CD, Mosquera-Vazquez M, Gomez-Eyles JL et al (2013) Is there sufficient “sink” in current bioaccessibility determinations of organic pollutants in soils? Environ Pollut 181:128–132. https://doi.org/10.1016/j.envpol.2013.05.053
Davie-Martin CL, Stratton KG, Teeguarden JG et al (2017) Implications of bioremediation of polycyclic aromatic hydrocarbon- contaminated soils for human health and cancer risk. Environ Sci Technol 51:9458–9468. https://doi.org/10.1021/acs.est.7b02956
EU (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe
EU (2004) Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air
Falta T, Limbeck A, Koellensperger G, Hann S (2008) Bioaccessibility of selected trace metals in urban PM2.5 and PM10 samples: a model study. Anal Bioanal Chem 390:1149–1157. https://doi.org/10.1007/s00216-007-1762-5
Galvão ES, Santos JM, Lima AT et al (2018) Trends in analytical techniques applied to particulate matter characterization: a critical review of fundaments and applications. Chemosphere 199:546–568. https://doi.org/10.1016/J.CHEMOSPHERE.2018.02.034
Gao P, da Silva EB, Townsend T et al (2019a) Emerging PAHs in urban soils: concentrations, bioaccessibility, and spatial distribution. Sci Total Environ 670:800–805. https://doi.org/10.1016/j.scitotenv.2019.03.247
Gao P, Guo H, Zhang Z et al (2018) Bioaccessibility and exposure assessment of trace metals from urban airborne particulate matter (PM10 and PM2.5) in simulated digestive fluid. Environ Pollut 242:1669–1677. https://doi.org/10.1016/J.ENVPOL.2018.07.109
Gao P, Liu D, Guo L et al (2019b) Ingestion bioaccessibility of indoor dust-bound PAHs: inclusion of a sorption sink to simulate passive transfer across the small intestine. Sci Total Environ 659:1546–1554. https://doi.org/10.1016/J.SCITOTENV.2018.12.459
Goix S, Uzu G, Oliva P et al (2016) Metal concentration and bioaccessibility in different particle sizes of dust and aerosols to refine metal exposure assessment. J Hazard Mater 317:552–562. https://doi.org/10.1016/j.jhazmat.2016.05.083
Haro-Vicente JF, Martínez-Graciá C, Ros G (2006) Optimisation of in vitro measurement of available iron from different fortificants in citric fruit juices. Food Chem 98:639–648. https://doi.org/10.1016/j.foodchem.2005.06.040
Hernández-Pellón A, Nischkauer W, Limbeck A, Fernández-Olmo I (2018) Metal(loid) bioaccessibility and inhalation risk assessment: a comparison between an urban and an industrial area. Environ Res 165:140–149. https://doi.org/10.1016/j.envres.2018.04.014
Hu X, Zhang Y, Ding Z et al (2012) Bioaccessibility and health risk of arsenic and heavy metals (Cd Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing. China Atmos Environ 57:146–152. https://doi.org/10.1016/j.atmosenv.2012.04.056
Huang H, Jiang Y, Xu X, Cao X (2018) In vitro bioaccessibility and health risk assessment of heavy metals in atmospheric particulate matters from three different functional areas of Shanghai, China. Sci Total Environ 610–611:546–554. https://doi.org/10.1016/j.scitotenv.2017.08.074
Huang M, Chen X, Zhao Y et al (2014a) Arsenic speciation in total contents and bioaccessible fractions in atmospheric particles related to human intakes. Environ Pollut 188:37–44. https://doi.org/10.1016/j.envpol.2014.01.001
Huang M, Wang W, Chan CY et al (2014b) Contamination and risk assessment (based on bioaccessibility via ingestion and inhalation) of metal(loid)s in outdoor and indoor particles from urban centers of Guangzhou, China. Sci Total Environ 479–480:117–124. https://doi.org/10.1016/j.scitotenv.2014.01.115
Kademoglou K, Giovanoulis G, Palm-Cousins A et al (2018a) In vitro inhalation bioaccessibility of phthalate esters and alternative plasticizers present in indoor dust using artificial lung fluids. Environ Sci Technol Lett 5:329–334. https://doi.org/10.1021/acs.estlett.8b00113
Kademoglou K, Williams AC, Collins CD (2018b) Bioaccessibility of PBDEs present in indoor dust: a novel dialysis membrane method with a Tenax TA® absorption sink. Sci Total Environ 621:1–8. https://doi.org/10.1016/j.scitotenv.2017.11.097
Kang Y, Cheung KC, Wong MH (2011) Mutagenicity, genotoxicity and carcinogenic risk assessment of indoor dust from three major cities around the Pearl River Delta. Environ Int 37:637–643. https://doi.org/10.1016/j.envint.2011.01.001
Kastury F, Smith E, Juhasz AL (2017) A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Sci Total Environ 574:1054–1074. https://doi.org/10.1016/j.scitotenv.2016.09.056
Kastury F, Smith E, Karna RR et al (2018) An inhalation-ingestion bioaccessibility assay (IIBA) for the assessment of exposure to metal(loid)s in PM10. Sci Total Environ 631–632:92–104. https://doi.org/10.1016/j.scitotenv.2018.02.337
Li C, Cui XY, Fan YY et al (2015) Tenax as sorption sink for in vitro bioaccessibility measurement of polycyclic aromatic hydrocarbons in soils. Environ Pollut 196:47–52. https://doi.org/10.1016/j.envpol.2014.09.016
Li Y, Juhasz AL, Ma LQ, Cui X (2019) Inhalation bioaccessibility of PAHs in PM2.5: implications for risk assessment and toxicity prediction. Sci Total Environ 650:56–64. https://doi.org/10.1016/j.scitotenv.2018.08.246
López-Mahía P, Muniategui-Lorenzo S, López-Moure MP et al (2003) Determination of aliphatic and polycyclic aromatic hydrocarbons in atmospheric particulate samples of A Coruña city (Spain). Environ Sci Pollut Res 10:98–102. https://doi.org/10.1065/espr2001.12.105
Mesquita SR, van Drooge BL, Barata C et al (2014) Toxicity of atmospheric particle-bound PAHs: an environmental perspective. Environ Sci Pollut Res 21:11623–11633. https://doi.org/10.1007/s11356-014-2628-y
Miller D, Schricker R, Ph D, Rasmussen R (1981) An in vitro availability method for estimation iron availability from meals. Am J Clin Nutr 43:2248–2256
Mohr V, Miró M, Limbeck A (2017) On-line dynamic extraction system hyphenated to inductively coupled plasma optical emission spectrometry for automatic determination of oral bioaccessible trace metal fractions in airborne particulate matter. Anal Bioanal Chem 409:2747–2756. https://doi.org/10.1007/s00216-017-0219-8
Moreda-Piñeiro J, Moreda-Piñeiro A, Bermejo-Barrera P (2015a) In vivo and in vitro testing for selenium and selenium compounds bioavailability assessment in foodstuff. Crit Rev Food Sci Nutr 57:805–833. https://doi.org/10.1080/10408398.2014.934437
Moreda-Piñeiro J, Moreda-Piñeiro A, Romarís-Hortas V et al (2013) In vitro bioavailability of total selenium and selenium species from seafood. Food Chem 139:872–877. https://doi.org/10.1016/j.foodchem.2013.01.116
Moreda-Piñeiro J, Turnes-Carou I, Alonso-Rodríguez E et al (2015b) The influence of oceanic air masses on concentration of major ions and trace metals in PM2.5 fraction at a coastal European suburban site. Water, Air, Soil Pollut 226:2240. https://doi.org/10.1007/s11270-014-2240-2
Moreda-Piñeiro J, Dans-Sánchez L, Sánchez-Piñero J et al (2019) Oral bioavailability estimation of toxic and essential trace elements in PM10. Atmos Environ 213:104–115. https://doi.org/10.1016/j.atmosenv.2019.06.001
Mukhtar A, Limbeck A (2011) Development of an ETV-ICP-OES procedure for assessment of bio-accessible trace metal fractions in airborne particulate matter. J Anal at Spectrom 26:2081–2088. https://doi.org/10.1039/c1ja10125k
Nemmar A, Holme JA, Rosas I et al (2013) Recent advances in particulate matter and nanoparticle toxicology: a review of the in vivo and in vitro studies. Biomed Res Int 2013:1–22. https://doi.org/10.1155/2013/279371
Nie D, Wu Y, Chen M et al (2018) Bioaccessibility and health risk of trace elements in fine particulate matter in different simulated body fluids. Atmos Environ 186:1–8. https://doi.org/10.1016/j.atmosenv.2018.05.024
Padoan E, Romè C, Ajmone-Marsan F (2017) Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect. Sci Total Environ 601–602:89–98. https://doi.org/10.1016/j.scitotenv.2017.05.180
Patinha C, Durães N, Sousa P et al (2015) Assessment of the influence of traffic-related particles in urban dust using sequential selective extraction and oral bioaccessibility tests. Environ Geochem Health 37:707–724. https://doi.org/10.1007/s10653-015-9713-0
Puls C, Limbeck A, Hann S (2012) Bioaccessibility of palladium and platinum in urban aerosol particulates. Atmos Environ 55:213–219. https://doi.org/10.1016/j.atmosenv.2012.03.023
Quintana JB, Rosende M, Montes R et al (2017) In-vitro estimation of bioaccessibility of chlorinated organophosphate flame retardants in indoor dust by fasting and fed physiologically relevant extraction tests. Sci Total Environ 580:540–549. https://doi.org/10.1016/j.scitotenv.2016.11.210
Raffy G, Mercier F, Glorennec P et al (2018) Oral bioaccessibility of semi-volatile organic compounds (SVOCs) in settled dust: A review of measurement methods, data and influencing factors. J Hazard Mater 352:215–227. https://doi.org/10.1016/j.jhazmat.2018.03.035
Ruby MV, Schoof R, Brattin W et al (1999) Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol 33:3697–3705. https://doi.org/10.1021/es990479z
Sánchez-Piñero J, Moreda-Piñeiro J, Concha-Graña E et al (2021) Inhalation bioaccessibility estimation of polycyclic aromatic hydrocarbons from atmospheric particulate matter (PM10): Influence of PM10 composition and health risk assessment. Chemosphere 263:127847. https://doi.org/10.1016/j.chemosphere.2020.127847
Sysalová J, Száková J, Tremlová J et al (2014) Methodological aspects of in vitro assessment of bio-accessible risk element pool in Urban particulate matter. Biol Trace Elem Res 161:216–222. https://doi.org/10.1007/s12011-014-0101-x
Tang XY, Tang L, Zhu YG et al (2006) Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in soils from Beijing using an in vitro test. Environ Pollut 140:279–285. https://doi.org/10.1016/j.envpol.2005.07.010
Turner A (2011) Oral bioaccessibility of trace metals in household dust: a review. Environ Geochem Health 33:331–341. https://doi.org/10.1007/s10653-011-9386-2
Turner A, Hefzi B (2010) Levels and bioaccessibilities of metals in dusts from an arid environment. Water Air Soil Pollut 210:483–491. https://doi.org/10.1007/s11270-009-0274-7
Turner A, Ip KH (2007) Bioaccessibility of metals in dust from the indoor environment: application of a physiologically based extraction test. Environ Sci Technol 41:7851–7856. https://doi.org/10.1021/es071194m
Turner A, Simmonds L (2006) Elemental concentrations and metal bioaccessibility in UK household dust. Sci Total Environ 371:74–81. https://doi.org/10.1016/j.scitotenv.2006.08.011
UNE (2015) UNE-EN 12341:2015. Air Quality - Determination of the PM10 fraction of suspended particulate matter - reference method and field test procedure to demonstrate reference equivalence of measurement methods. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0054246. Accessed 23 Jul 2019
USEPA (1993) Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons
USEPA (2001) Supplemental guidance for developing soil screening levels for superfund sites. In: OSWER
USEPA (2009) Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Office of Superfund Remediation and Technology Innovation
USEPA (2014) Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. Office of Superfund Remediation and Technology Innovation, Assessment and Remediation Division
Uzu G, Sauvain JJ, Baeza-Squiban A et al (2011) In vitro assessment of the pulmonary toxicity and gastric availability of lead-rich particles from a lead recycling plant. Environ Sci Technol 45:7888–7895. https://doi.org/10.1021/es200374c
Wang W, Huang MJ, Zheng JS et al (2013) Exposure assessment and distribution of polychlorinated biphenyls (PCBs) contained in indoor and outdoor dusts and the impacts of particle size and bioaccessibility. Sci Total Environ 463–464:1201–1209. https://doi.org/10.1016/j.scitotenv.2013.04.059
Wolfgor R, Drago SR, Rodriguez V et al (2002) In vitro measurement of available iron in fortified foods. Food Res Int 35:85–90. https://doi.org/10.1016/S0963-9969(01)00122-3
Yu Y, Pang Y, Zhang X et al (2011) Optimization of an in vitro method to measure the bioaccessibility of polybrominated diphenyl ethers in dust using response surface methodology. J Environ Sci 23:1738–1746. https://doi.org/10.1016/S1001-0742(10)60571-2
