Optoelectronic properties of new direct bandgap polymorphs of single-layered Germanium sulfide

Ceramics International - Tập 45 Số 14 - Trang 18073-18078 - 2019
Bakhtiar Ul Haq1, S. AlFaify1, A. Laref2, R. Ahmed3,4, Faheem K. Butt5, Aijaz Rasool Chaudhry6, Sajid Ur Rehman7, Q. Mahmood8
1Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
2Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
3Center for High Energy Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
4Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor Bharu, Johor, Malaysia
5Department of Physics, Division of Science and Technology, University of Education, College Road, Township, Lahore 54770, Pakistan
6Deanship of Scientific Research, University of Bisha, Bisha 61922, P.O. Box 551, Saudi Arabia
7State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
8Department of Physics, Faculty of Science, Imam Abdulrahman Bin Faisal University, P.O. 383, Dammam 31113, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Matthes, 2014, Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles, New J. Phys., 16, 105007, 10.1088/1367-2630/16/10/105007

Liu, 2014, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z

Wei, 2014, Superior mechanical flexibility of phosphorene and few-layer black phosphorus, Appl. Phys. Lett., 104, 251915, 10.1063/1.4885215

Rodin, 2016, Valley physics in tin (II) sulfide, Phys. Rev. B, 93, 10.1103/PhysRevB.93.045431

Balendhran, 2015, Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene, Small, 11, 640, 10.1002/smll.201402041

Ezawa, 2015, Monolayer topological insulators: silicene, germanene, and stanene, J. Phys. Soc. Jpn., 84, 121003, 10.7566/JPSJ.84.121003

Ni, 2011, Tunable bandgap in silicene and germanene, Nano Lett., 12, 113, 10.1021/nl203065e

Shi, 2015, Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe, Nano Lett., 15, 6926, 10.1021/acs.nanolett.5b02861

Manivannan, 2018, Preparation of chalcogenide thin films using electrodeposition method for solar cell applications–A review, Sol. Energy, 173, 1144, 10.1016/j.solener.2018.08.057

Hu, 2017, High thermoelectric performances of monolayer SnSe allotropes, Nanoscale, 9, 16093, 10.1039/C7NR04766E

Haq, 2018, Exploring single-layered SnSe honeycomb polymorphs for optoelectronic and photovoltaic applications, Phys. Rev. B, 97

Cui, 2018, Exploration work function and optical properties of monolayer SnSe allotropes, Superlattice. Microst., 114, 251, 10.1016/j.spmi.2017.12.039

Xu, 2017, First-principles study on the electronic, optical, and transport properties of monolayer α-and β-GeSe, Phys. Rev. B, 96, 245421, 10.1103/PhysRevB.96.245421

Zhang, 2015, Structural and electronic properties of atomically thin germanium selenide polymorphs, Science China Materials, 58, 929, 10.1007/s40843-015-0107-5

Singh, 2014, Computational prediction of two-dimensional group-IV mono-chalcogenides, Appl. Phys. Lett., 105, 10.1063/1.4891230

Xue, 2012, Anisotropic photoresponse properties of single micrometer‐sized GeSe nanosheet, Adv. Mater., 24, 4528, 10.1002/adma.201201855

Xu, 2013, Graphene-like two-dimensional materials, Chem. Rev., 113, 3766, 10.1021/cr300263a

Xu, 2017, Electronic and optical properties of the monolayer group-IV monochalcogenides M X (M= Ge, Sn; X= S, Se, Te), Phys. Rev. B, 95, 235434, 10.1103/PhysRevB.95.235434

Rehman, 2018, Exploring novel phase of tin sulfide for photon/energy harvesting materials, Sol. Energy, 169, 648, 10.1016/j.solener.2018.05.006

Wu, 2017, Origin of polymorphism of the two-dimensional group-IV monochalcogenides, Phys. Rev. B, 96, 205411, 10.1103/PhysRevB.96.205411

Chen, 2016, SiTe monolayers: Si-based analogues of phosphorene, J. Mater. Chem. C, 4, 6353, 10.1039/C6TC01138A

Huang, 2016, Structural anisotropy results in strain-tunable electronic and optical properties in monolayer GeX and SnX (X= S, Se, Te), J. Chem. Phys., 144, 114708, 10.1063/1.4943969

Shi, 2015, Quasiparticle band structures and thermoelectric transport properties of p-type SnSe, J. Appl. Phys., 117, 10.1063/1.4907805

Minbashi, 2018, Simulation of high efficiency SnS-based solar cells with SCAPS, Sol. Energy, 176, 520, 10.1016/j.solener.2018.10.058

Eymard, 1977, Optical and electron-energy-loss spectroscopy of GeS, GeSe, SnS, and SnSe single crystals, Phys. Rev. B, 16, 1616, 10.1103/PhysRevB.16.1616

Tan, 2017, Anisotropic optical and electronic properties of two-dimensional layered germanium sulfide, Nano Research, 10, 546, 10.1007/s12274-016-1312-6

Ulaganathan, 2016, High photosensitivity and broad spectral response of multi-layered germanium sulfide transistors, Nanoscale, 8, 2284, 10.1039/C5NR05988G

Lan, 2015, Synthesis of single-crystalline GeS nanoribbons for high sensitivity visible-light photodetectors, J. Mater. Chem. C, 3, 8074, 10.1039/C5TC01435B

Li, 2016, Germanium monosulfide monolayer: a novel two-dimensional semiconductor with a high carrier mobility, J. Mater. Chem. C, 4, 2155, 10.1039/C6TC00454G

Gomes, 2016, Vacancies and oxidation of two-dimensional group-IV monochalcogenides, Phys. Rev. B, 94, 10.1103/PhysRevB.94.054103

Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Irfan, 2018, Effect of Coulomb interactions on optoelectronic and magnetic properties of novel A2V2O7 (A= Fe and Co) compounds, J. Alloy. Comp., 766, 536, 10.1016/j.jallcom.2018.06.318

Reshak, 2014, NaAuS chicken-wire-like semiconductor: electronic structure and optical properties, J. Alloy. Comp., 582, 6, 10.1016/j.jallcom.2013.07.208

Koller, 2012, Improving the modified Becke-Johnson exchange potential, Phys. Rev. B, 85, 155109, 10.1103/PhysRevB.85.155109

Ul Haq, 2018, Engineering the electronic band structures of novel cubic structured germanium monochalcogenides for thermoelectric applications, J. Appl. Phys., 123, 175107, 10.1063/1.5019986

Tran, 2007, Band gap calculations with Becke–Johnson exchange potential, J. Phys. Condens. Matter, 19, 196208, 10.1088/0953-8984/19/19/196208

Koller, 2011, Merits and limits of the modified Becke-Johnson exchange potential, Phys. Rev. B, 83, 195134, 10.1103/PhysRevB.83.195134

Haq, 2018, Exploring thermoelectric materials for renewable energy applications: the case of highly mismatched alloys based on AlBi1-xSbx and InBi1-xSbx, Intermetallics, 93, 235, 10.1016/j.intermet.2017.09.017

AlFaify, 2018, Investigation of GaBi1-xSbx based highly mismatched alloys: potential thermoelectric materials for renewable energy devices and applications, J. Alloy. Comp., 739, 380, 10.1016/j.jallcom.2017.12.306

Haq, 2018, Thermoelectric properties of the novel cubic structured silicon monochalcogenides: a first-principles study, J. Alloy. Comp., 769, 413, 10.1016/j.jallcom.2018.07.325

Butt, 2017, Investigation of thermoelectric properties of novel cubic phase SnSe: a promising material for thermoelectric applications, J. Alloy. Comp., 715, 438, 10.1016/j.jallcom.2017.05.003

Haq, 2017, Composition-induced influence on the electronic band structure, optical and thermoelectric coefficients of the highly mismatched GaNSb alloy over the entire range: a DFT analysis, J. Alloy. Comp., 693, 1020, 10.1016/j.jallcom.2016.09.269

Reshak, 2014, Dispersion of the second harmonic generation from CdGa2X4 (X= S, Se) defect chalcopyrite: DFT calculations, J. Alloy. Comp., 595, 125, 10.1016/j.jallcom.2013.12.267

Azam, 2015, Detailed DFT studies of the electronic structure and optical properties of KBaMSe3 (M= As, Sb), J. Alloy. Comp., 644, 91, 10.1016/j.jallcom.2015.04.181

Blaha, 2001

Azam, 2019, Doping induced effect on optical and band structure properties of Sr2Si5N8 based phosphors: DFT approach, J. Alloy. Comp., 771, 1072, 10.1016/j.jallcom.2018.09.020

Rocca, 1995, Low-energy EELS investigation of surface electronic excitations on metals, Surf. Sci. Rep., 22, 1, 10.1016/0167-5729(95)00004-6

Stahrenberg, 2001, Optical properties of copper and silver in the energy range 2.5–9.0 eV, Phys. Rev. B, 64, 115111, 10.1103/PhysRevB.64.115111

Gomes, 2015, Phosphorene analogues: isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure, Phys. Rev. B, 92, 10.1103/PhysRevB.92.085406