Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Yêu cầu về hiệu suất kỹ thuật-eco tối ưu cho đơn vị khử muối bằng năng lượng mặt trời sử dụng bộ thu ống hình vòng chân không kết hợp với bộ tập trung parabol sửa đổi
Tóm tắt
Nghiên cứu này trình bày một phương pháp mới cho hệ thống khử muối bằng năng lượng mặt trời hai độ dốc với dãy song song của bộ thu ống hình vòng chân không kết hợp với bộ tập trung parabol sửa đổi (DS-SDS-EATC-MCPC), được nghiên cứu theo yêu cầu về thiết kế sinh thái nhằm tối ưu hiệu suất và khả năng kinh tế - môi trường. Giải pháp được đề xuất được cấu hình để đạt được nhiệt độ tối ưu nhất của bể là 99,6 °C với chiều sâu nước lớn hơn (0,16 m) cho hướng mặt trời tại hướng Đông-Tây của bề mặt bể (30°) cùng với ống hình vòng chân không hướng Nam (30°). Tốc độ tuần hoàn cao nhất (thermo siphon) đạt được khoảng 55 kg/h. Hiệu suất tổng quát (năng lượng-exergy) của hệ thống lần lượt là 46,53% và 3,62%. Lượng nước tinh khiết hàng ngày (16,94 kg) và chi phí sản xuất của nó (năng lượng 0,007 USD/kWh; exergy 0,013 USD/kWh) với giá bán dự kiến (0,07 USD/l) vẫn giữ được tính hợp lý. Lượng CO2 giảm thiểu (năng lượng-exergy) và tín chỉ xanh thu được lần lượt là 139,74 và 77,30 tấn, và 1396 USD và 772,24 USD. Chi phí xây dựng của hệ thống chỉ là 200,79 USD, và năng suất của mô hình được thiết lập > 100%, cho thấy hệ thống này là hiện thực và có tính khả thi. Lượng nước tinh khiết rõ ràng với chi phí vận hành thấp, lợi ích sinh thái lớn, giảm thiểu hiệu quả cao và thời gian hoàn vốn ngắn khiến hệ thống này bền vững, khả thi cho các khu vực thu thập hợp lý, và tối ưu EATC với MCPC theo yêu cầu thiết kế sinh thái cho giải pháp được dự kiến đệ trình.
Từ khóa
#khử muối bằng năng lượng mặt trời #bộ thu ống hình vòng chân không #hiệu suất năng lượng #thiết kế sinh thái #tiết kiệm năng lượng #CO2 giảm thiểuTài liệu tham khảo
Badran OO, Abu-Khader MM (2007) Evaluating thermal performance of a single slope solar still. Heat Mass Transfer 43:985–995
Bait O (2019) Exergy, environeeconomic and economic analyses of a tubular solar water heater assisted solar still. J Cleaner Production 212:630–646
Barbosa EG, Martins MA, Araujo MEV, Renato NS, Zolnier S, Pereira EG, Resende MO (2020) Experimental evaluation of a stationary parabolic trough solar collector: influence of the concentrator and heat transfer fluid. Journal of Cleaner Production 276:124174
Benson, F., 1952. Further notes on the productivity of machines requiring attention at random intervals. J. Roy. Stat. Soc. B XIV, 200–210.
Budihardjo I, Morrison GL (2009) Performance of water-in-glass evacuated tube solar water heaters. Sol Energy 83:49–56
Budihardjo I, Morrison GL, Behnia M (2007) Natural circulation flow through water-in- lass evacuated tube solar collectors. Sol Energy 81:1460–1472
Cengel XA, Boles MA (2013) Thermodynamics, an engineering approach. McGraw-Hill Education Pvt. Ltd., New York
Cooper PI (1973) The maximum efficiency of single-effect solar stills. Sol Energy 15:205–217
Cooper PI (1969) The absorption of solar energy radiation in solar stills. Sol Energy 12:133
Cox DR (1951) The productivity of machines requiring attention at random intervals. J. Roy. Stat. Soc. B XIII, 65–82
Dev R, Tiwari GN (2012) Annual performance of evacuated tubular collector integrated solar still. Desalination Water Treatment 41:204–223
Dubey A, Kumar S, Arora A (2021) Enviro-energy-exergo-economic analysis of ETC augmented double slope solar still with ‘n’ parallel tubes under forced mode: environmental and economic feasibility. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.123859
Duffie JA, Beckman WA (2006) Solar engineering of thermal processes. Hoboken- Wiley, New Jersey
Dunkle RV (1961) Solar water distillation: the roof type solar still and a multiple effect diffusion still, International Developments in Heat Transfer ASME 895–902
Dwivedi VK, Tiwari GN (2008) Energy and exergy analysis of single and double slope passive solar still. Trends in Applied Sciences and Research 3(3):225–241
IAPWS (1996) International association for the properties of water and steam, for the thermodynamic properties of ordinary water substance for general and scientific use, 1996
IAPWS (2008) International association for the properties of water and steam, the viscosity of ordinary water substance, 2008
Issa RJ, Chang B (2017) Performance study on evacuated tubular collector coupled solar stillin west texas climate. Int J Green Energy. https://doi.org/10.1080/15435075.2017.1328422
Kalogirou S (2003) The potential of solar industrial process heat applications. Appl Energy 76:337–361
Kalshian R (2008) Energy versus emissions: the big challenge of the new millennium. Info Change News and Features, www.infochangeindia.org/agenda5_01.jsp, accessed 21 March 2008
Koffi PME, Andoh HY, Gbaha P, Toure S, Ado G (2008) Theoretical and experimental study of solar water heater with internal exchanger using thermosiphon system. Energy Convers Manage 49:2279–2290
Kumar S, Dubey A, Tiwari G (2014) A solar still augmented with an evacuated tube collector in forced mode. Desalination 347:15–24
Liu BYH, Jordan RC (1960) The interrelationship and characteristic distribution of direct, diffuse and total solar radiation, Solar Energy 4(3)
Liu BYH, Jordan RC (1962) Daily insolation on surfaces tilted towards equator. ASHRAE J 3(10):53
Malik MAS, Tiwari GN, Kumar A, Sodha MS (1982) Solar distillation—a practical study of a wide range of stills and their optimum design, construction and performance. Pergamon Press, Oxford, U. K.
Mittal ML, Sharma C, Singh R (2014) Decadal emission estimates of carbon dioxide, sulphur dioxide and nitic oxide emissions from coal burning in electric power generation plants in India. Environ Monit Assess 186:6857–6866
Morrison G, Tran N, McKenzie D, Onley I, Harding G, Collins R (1984) Long term performance of evacuated tubular solar water heaters in Sydney, Australia. Sol Energy 32:785–791
Morrison GL, Budihardjoa I, Behnia M (2005) Measurement and simulation of flow rate in a water-in-glass evacuated tube solar water heater. Sol Energy 78:257–267
Patel J, Markam BK, Maiti S (2019) Potable water by solar thermal distillation in solar salt works and performance enhancement by integrating with evacuated tubes. Sol Energy 188:561–572
Petela R (1964) Exergy of heat radiation. Journal of Heat Transfer, ASME 2:187–192
Petela R (2003) Exergy of undiluted thermal radiation. Sol Energy 74:469–488
Petela R (2010a) 2010. McGraw Hill, Inc, Engineering thermodynamics of thermal radiation for solar power utilization
Petela R (2010b) Radiation spectra of surface. Int J Exergy 7:89–109
Pissavi P (1982) Modelling of the dynamic behavior of a tank for solar storage with internal exchanger. Re´v Ge´n Thermique 246–247, 521–35
Rashidi S, Karimi N, Mahian O, Esfahani JA (2018) A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim 135:1145–1159
Reddy KS, Sharon H (2017) Energy–environment–economic investigations on evacuated active multiple stage series flow solar distillation unit for potable water production. Energy Convers Manage 151:259–285
Reddy KS, Sharon H, Krithika D, Philip L (2018) Performance, water quality and enviro-economic investigations on solar distillation treatment of reverse osmosis reject and sewage water. Sol Energy 173:160–172
Roome J (2019) State and Trends of Carbon Pricing (2019). World Bank Group, Washington DC
Sadeghi G, Pisello AL, Nazari S, Jowzi M, Shama F (2021) Empirical data-driven multi-layer perceptron and radial basis function techniques in predicting the performance of nanofluid-based modified tubular solar collectors. J Clean Prod 295:126409
Sampathkumar K, Arjunan T, Senthilkumar P (2013) The experimental investigation of a solar still coupled with an evacuated tube collector. Energy Sources, Part A 35:261–270
Sato AI, Scalon VL, Padilha A (2012) Numerical analysis of a modified evacuated tubes solar collector. International Conference on Renewable Energies and Power Quality (ICREPQ'12)
Sharon H, Reddy KS, Krithika D, Philip L (2017) Experimental performance investigation of tilted solar still with basin and wick for distillate quality and enviro-economic aspects. Desalination 410:30–54
Singh AK (2020) An inclusive study on new conceptual designs of passive solar desalting systems. Heliyon 7:e05793
Singh AK, Samsher, (2020) Analytical study of evacuated annulus tube collector assisted solar desaltification system: A review. Sol Energy 207:1404–1426
Singh AK, Samsher, (2021) A review study of solar desalting units with evacuated tube collectors. Journal of Cleaner Production 279:123542
Singh AK, Samsher, (2021b) Material conscious energy matrix and enviro-economic analysis of passive ETC solar still. Materials Today: Proceedings 38:1–5
Singh AK, Samsher (2021b) Tech-en-econ-energy-exergy-matrix (T4EM) observations of evacuated solar tube collector augmented solar desaltification unit: a modified design loom. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2021.09.088
Singh AK, Yadav RK, Mishra D, Prasad R, Gupta LK, Kumar P (2020) Active solar distillation technology: a wide overview. Desalination 493:114652
Singh AK, Samsher, (2022) Techno-environ-economic-energy-exergy-matrices performance analysis of evacuated annulus tube with modified parabolic concentrator assisted single slope solar desalination system. Journal of Cleaner Production 332:129996
Singh RV, Kumar S, Hasan M, Khan ME, Tiwari G (2013) Performance of a solar still integrated with evacuated tube collector in natural mode. Desalination 318:25–33
Tiwari AK, Tiwari GN (2007) Annual performance analysis and thermal modelling of passive solar still for different inclination of condensing cover. Energy Res 31(4):1358–1382
Tiwari G, Shukla S, Singh I (2003) Computer modeling of passive/active solar stills by using inner glass temperature. Desalination 154:171–185
Tiwari GN (2014) Solar energy: fundamentals, design, modelling and applications. Narosa Publishing House, New Delhi
Tiwari GN, Mishra RK (2012) 2012. RSC Publishing Cambridge, UK, Advanced renewable energy sources
Tiwari GN, Raj K, Maheshwari KP, Sawhney RL (1992) Recent advances in solar distillation. In: International Journal of Solar Energy and Energy Conversion. Wiley Eastern, New Delhi, pp. 32e149 (Chapter 2)
Tiwari GN, Tiwari A, Shyam, (2016) Handbook of Solar Energy. Theory, Analysis and Applications, Springer Nature, Singapore
Tiwari GN, Yadav JK, Singh DB, Al–Helal, I.M., Abdel-Ghany, A.M., (2015) Exergoeconomic and enviroeconomic analyses of partially covered photovoltaic flat plate collector active solar distillation system. Desalination 367:186–196
Tsatsaronis G, Lin L, Pisa J (1993) Exergy costing in exergoeconomics. J. Energy Resour. – ASME 115, 9–16
Tsatsaronis G, Park H (2002) On avoidable and unavoidable exergy destructions and investment costs in thermal systems. Energy Convers Manage 43(9–12):1259–1270
Tsatsaronis G, Winhold M (1985) Exergoeconomic analysis and evaluation of energy conversion plants – a new general methodology. Energy 10:69–94
Watt M, Jonhnson A, Ellis M, Quthred N (1998) Prog Photovolt Res Appl 6(2):127–136
Xu L, Liu Z, Li S, Shao Z, Xia N (2019) Performance of solar mid-temperature evacuated tube collector for steam generation. Sol Energy 183:162–172
Yari M, Mazareh AE, Mehr AS (2016) A novel cogeneration system for sustainable water and power production by integration of a solar still and PV module. Desalination 398:1–11
Yousef MS, Hassan H, Sekiguchi H (2019) Energy, exergy, economic and enviro economic (4E) analyses of solar distillation system using different absorbing materials. Appl Therm Eng 150:30–41
Yousef MdS, Hassan H (2019) Assessment of different passive solar stills via exergoeconomic, exergoenvironmental, and exergoenviroeconomic approaches: a comparative study. Sol Energy 182:316–331