Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Thiết kế tối ưu cho micromixer Tesla
Tóm tắt
Trong nghiên cứu này, một thiết kế tối ưu cho chỉ số trộn cao và giảm áp suất thấp trong một micromixer hình Tesla hai chiều với chế độ dòng chảy chất lỏng laminar đã được xem xét. Thuật toán di truyền đã được sử dụng để tìm ra thiết kế cấu trúc tối ưu. Phương pháp xử lý hình ảnh được áp dụng để xác định các cạnh của micromixer nhằm tạo ra cấu hình lưới trên lĩnh vực tính toán. Các phương trình chi phối dòng chảy chất lỏng laminar và các phương trình nồng độ bổ sung được rời rạc hóa và giải quyết bằng phương pháp thể tích hữu hạn. Tất cả các cấu hình cấu trúc của micromixer được tạo ra như một nguyên mẫu thông qua phương pháp thuật toán di truyền đều được đánh giá riêng lẻ. Thiết kế tốt nhất được đạt được bằng cách xoay các chướng ngại vật trung tâm của micromixer Tesla với giá trị tối ưu của chi phí trộn, điều này là một hàm của hai tham số mục tiêu (tức là, chỉ số trộn tại đầu ra và giảm áp suất của dòng chảy chất lỏng đi qua kênh). Qua đó cho thấy, thiết kế tối ưu thu được trong nghiên cứu hiện tại có chi phí trộn thấp hơn. Do đó, hiệu suất tốt hơn đã được đạt được so với loại micromixer Tesla ban đầu trong các khoảng chấp nhận của lưu lượng dòng chảy chất lỏng đi qua.
Từ khóa
#micromixer #thiết kế tối ưu #thuật toán di truyền #dòng chảy laminar #phương pháp thể tích hữu hạn #chỉ số trộn #giảm áp suấtTài liệu tham khảo
Abbas Y et al (2013) Active continuous-flow micromixer using an external braille pin actuator array. Micromachines 4(1):80–89
Afzal A, Kim K-Y (2014) Three-objective optimization of a staggered herringbone micromixer. Sens Actu, B Chem 192:350–360
Aubin J et al (2003) Characterization of the mixing quality in micromixers. Chem Eng Technol Ind Chem Plant Equip Process Eng Biotechnol 26(12):1262–1270
Bahnemann J et al (2013) A new integrated lab-on-a-chip system for fast dynamic study of mammalian cells under physiological conditions in bioreactor. Cells 2(2):349–360
Bayareh M, Ashani MN, Usefian A (2020) Active and passive micromixers: a comprehensive review. Chem Eng Process Process Intens 147:107771
Bazaz SR et al (2018) A hybrid micromixer with planar mixing units. RSC Adv 8(58):33103–33120
Beebe DJ et al (2001) Passive mixing in microchannels: fabrication and flow experiments. Mécanique Industries 2(4):343–348
Bhagat AAS, Papautsky I (2008) Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles. J Micromech Microeng 18(8):085005
Cai G et al (2017) A review on micromixers. Micromachines 8(9):274
Chen P-C (2013) An evaluation of a real-time passive micromixer to the performance of a continuous flow type microfluidic reactor. BioChip J 7(3):227–233
Cheri MS et al (2013) Simulation and experimental investigation of planar micromixers with short-mixing-length. Chem Eng J 234:247–255
Culbertson CT et al (2014) Micro total analysis systems: fundamental advances and biological applications. Anal Chem 86(1):95–118
Ehrfeld W et al (2000) Implementation of microreaction technology in process engineering. Microreaction technology: industrial prospects. Springer, pp 14–34
Fan Y, Hassan I (2010) Experimental and numerical investigation of a scaled-up passive micromixer using fluorescence technique. Exp Fluids 49(3):733–747
Fluent A (2013) ANSYS fluent theory guide 15.0. ANSYS, Canonsburg, pp 33.
Granados-Ortiz FJ, Ortega-Casanova J (2021) Machine learning-aided design optimization of a mechanical micromixer. Phys Fluids. https://doi.org/10.1063/5.0048771
Hong C-C, Choi J-W, Ahn CH (2004) A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab Chip 4(2):109–113
Hong C-C, Choi J-W, Ahn CH (2001) A novel in-plane passive micromixer using Coanda effect. In: Micro Total Analysis Systems 2001. Springer
Hossain S et al (2010) Analysis and optimization of a micromixer with a modified Tesla structure. Chem Eng J 158(2):305–314
Hossain S et al (2020) Investigation of mixing performance of two-dimensional micromixer using tesla structures with different shapes of obstacles. Ind Eng Chem Res 59(9):3636–3643
Hossain S et al (2021) Enhancement of mixing performance of two-layer crossing micromixer through surrogate-based optimization. Micromach (basel). https://doi.org/10.3390/mi12020211
Hsieh S-S, Lin J-W, Chen J-H (2013) Mixing efficiency of Y-type micromixers with different angles. Int J Heat Fluid Flow 44:130–139
Huang K-R et al (2012) Study of active micromixer driven by electrothermal force. Jpn J Appl Phys 51(4R):047002
Kakuta M, Bessoth FG, Manz A (2001) Microfabricated devices for fluid mixing and their application for chemical synthesis. Chem Rec 1(5):395–405
Kenis PJ, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285(5424):83–85
Koch M et al (1998) Two simple micromixers based on silicon. J Micromech Microeng 8(2):123
Kulkarni A et al (2013) Continuous flow multipoint dosing approach for selectivity engineering in sulfoxidation. Org Process Res Dev 17(10):1293–1299
Kumar V, Paraschivoiu M, Nigam K (2011) Single-phase fluid flow and mixing in microchannels. Chem Eng Sci 66(7):1329–1373
Lee C-Y et al (2011) Microfluidic mixing: a review. Int J Mol Sci 12(5):3263–3287
Lin Y et al (2011) Design and evaluation of an easily fabricated micromixer with three-dimensional periodic perturbation. Chem Eng J 171(1):291–300
Lin MX et al (2013) Continuous labeling of circulating tumor cells with microbeads using a vortex micromixer for highly selective isolation. Biosens Bioelectron 40(1):63–67
Liu RH et al (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9(2):190–197
Liu Y et al (2013) Experimental investigation of passive micromixers conceptual design using the layout optimization method. J Micromech Microeng 23(7):075002
Losey MW et al (2002) Design and fabrication of microfluidic devices for multiphase mixing and reaction. J Microelectromech Syst 11(6):709–717
Lu P, Thapa M, Liu C (2012) Surface friction and boundary layer thickening in transitional flow. In: Advances in modeling of fluid dynamics, p 1.
Miyake R, et al. (1993) Micro mixer with fast diffusion. In: [1993] Proceedings IEEE Micro Electro Mechanical Systems. IEEE
Nguyen N-T (2011) Micromixers: fundamentals, design and fabrication. William Andrew
Nobakht A, Shahsavan M, Paykani A (2013) Numerical study of diodicity mechanism in different Tesla-type microvalves. J Appl Res Technol 11(6):876–885
Ono T et al (2014) Continuous hydrothermal synthesis of Ca1—xSrxTiO3 solid-solution nanoparticles using a T-type micromixer. J Supercrit Fluids 85:159–164
Patankar SV, Spalding DB (1970) Heat and mass transfer in boundary layers: a general calculation procedure. Intertext.
Qi Z-Q et al (2012) Mixing effect of biometric flow channel in microbial fuel cells. Appl Energy 100:106–111
Shang M et al (2013) Packed-bed microreactor for continuous-flow adipic acid synthesis from cyclohexene and hydrogen peroxide. Chem Eng Technol 36(6):1001–1009
Stroock AD et al (2002a) Chaotic mixer for microchannels. Science 295(5555):647–651
Stroock AD et al (2002b) Patterning flows using grooved surfaces. Anal Chem 74(20):5306–5312
Thompson SM et al (2014) Numerical investigation of multistaged tesla valves. J Fluids Eng. https://doi.org/10.1115/1.4026620
Treybal RE (1980) Mass transfer operations. New York, pp 466
Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. Pearson education
Wang C-T et al (2014) Tesla valves in micromixers. Int J Chem Reactor Eng 12(1):397–403
Wang X, Yang L, Sun F (2021) CFD analysis and RSM optimization of obstacle layout in Tesla micromixer. Int J Chem Reactor Eng 19(10):1045–1055
Weigl BH et al (2001) Design and rapid prototyping of thin-film laminate-based microfluidic devices. Biomed Microdevice 3(4):267–274
Weng C-H et al (2013) An automatic microfluidic system for rapid screening of cancer stem-like cell-specific aptamers. Microfluid Nanofluid 14(3–4):753–765
Yang A-S, et al. (2013) Development of a 3d-tesla micromixer for bio-applications. In: 2013 IEEE International Conference on Mechatronics and Automation. IEEE.
Yang A-S et al (2015) A high-performance micromixer using three-dimensional Tesla structures for bio-applications. Chem Eng J 263:444–451
Yu S, Jeon T-J, Kim SM (2012) Active micromixer using electrokinetic effects in the micro/nanochannel junction. Chem Eng J 197:289–294
Yuan S et al (2021) An investigation of flow patterns and mixing characteristics in a cross-shaped micromixer within the laminar regime. Micromach (basel). https://doi.org/10.3390/mi12040462