Thiết kế tối ưu cho micromixer Tesla

Microfluidics and Nanofluidics - Tập 26 - Trang 1-8 - 2022
Bahador Abolpour1, Ramtin Hekmatkhah2, Rahim Shamsoddini3
1Department of Chemical Engineering, Sirjan University of Technology, Sirjan, Iran
2Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
3Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran

Tóm tắt

Trong nghiên cứu này, một thiết kế tối ưu cho chỉ số trộn cao và giảm áp suất thấp trong một micromixer hình Tesla hai chiều với chế độ dòng chảy chất lỏng laminar đã được xem xét. Thuật toán di truyền đã được sử dụng để tìm ra thiết kế cấu trúc tối ưu. Phương pháp xử lý hình ảnh được áp dụng để xác định các cạnh của micromixer nhằm tạo ra cấu hình lưới trên lĩnh vực tính toán. Các phương trình chi phối dòng chảy chất lỏng laminar và các phương trình nồng độ bổ sung được rời rạc hóa và giải quyết bằng phương pháp thể tích hữu hạn. Tất cả các cấu hình cấu trúc của micromixer được tạo ra như một nguyên mẫu thông qua phương pháp thuật toán di truyền đều được đánh giá riêng lẻ. Thiết kế tốt nhất được đạt được bằng cách xoay các chướng ngại vật trung tâm của micromixer Tesla với giá trị tối ưu của chi phí trộn, điều này là một hàm của hai tham số mục tiêu (tức là, chỉ số trộn tại đầu ra và giảm áp suất của dòng chảy chất lỏng đi qua kênh). Qua đó cho thấy, thiết kế tối ưu thu được trong nghiên cứu hiện tại có chi phí trộn thấp hơn. Do đó, hiệu suất tốt hơn đã được đạt được so với loại micromixer Tesla ban đầu trong các khoảng chấp nhận của lưu lượng dòng chảy chất lỏng đi qua.

Từ khóa

#micromixer #thiết kế tối ưu #thuật toán di truyền #dòng chảy laminar #phương pháp thể tích hữu hạn #chỉ số trộn #giảm áp suất

Tài liệu tham khảo

Abbas Y et al (2013) Active continuous-flow micromixer using an external braille pin actuator array. Micromachines 4(1):80–89 Afzal A, Kim K-Y (2014) Three-objective optimization of a staggered herringbone micromixer. Sens Actu, B Chem 192:350–360 Aubin J et al (2003) Characterization of the mixing quality in micromixers. Chem Eng Technol Ind Chem Plant Equip Process Eng Biotechnol 26(12):1262–1270 Bahnemann J et al (2013) A new integrated lab-on-a-chip system for fast dynamic study of mammalian cells under physiological conditions in bioreactor. Cells 2(2):349–360 Bayareh M, Ashani MN, Usefian A (2020) Active and passive micromixers: a comprehensive review. Chem Eng Process Process Intens 147:107771 Bazaz SR et al (2018) A hybrid micromixer with planar mixing units. RSC Adv 8(58):33103–33120 Beebe DJ et al (2001) Passive mixing in microchannels: fabrication and flow experiments. Mécanique Industries 2(4):343–348 Bhagat AAS, Papautsky I (2008) Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles. J Micromech Microeng 18(8):085005 Cai G et al (2017) A review on micromixers. Micromachines 8(9):274 Chen P-C (2013) An evaluation of a real-time passive micromixer to the performance of a continuous flow type microfluidic reactor. BioChip J 7(3):227–233 Cheri MS et al (2013) Simulation and experimental investigation of planar micromixers with short-mixing-length. Chem Eng J 234:247–255 Culbertson CT et al (2014) Micro total analysis systems: fundamental advances and biological applications. Anal Chem 86(1):95–118 Ehrfeld W et al (2000) Implementation of microreaction technology in process engineering. Microreaction technology: industrial prospects. Springer, pp 14–34 Fan Y, Hassan I (2010) Experimental and numerical investigation of a scaled-up passive micromixer using fluorescence technique. Exp Fluids 49(3):733–747 Fluent A (2013) ANSYS fluent theory guide 15.0. ANSYS, Canonsburg, pp 33. Granados-Ortiz FJ, Ortega-Casanova J (2021) Machine learning-aided design optimization of a mechanical micromixer. Phys Fluids. https://doi.org/10.1063/5.0048771 Hong C-C, Choi J-W, Ahn CH (2004) A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab Chip 4(2):109–113 Hong C-C, Choi J-W, Ahn CH (2001) A novel in-plane passive micromixer using Coanda effect. In: Micro Total Analysis Systems 2001. Springer Hossain S et al (2010) Analysis and optimization of a micromixer with a modified Tesla structure. Chem Eng J 158(2):305–314 Hossain S et al (2020) Investigation of mixing performance of two-dimensional micromixer using tesla structures with different shapes of obstacles. Ind Eng Chem Res 59(9):3636–3643 Hossain S et al (2021) Enhancement of mixing performance of two-layer crossing micromixer through surrogate-based optimization. Micromach (basel). https://doi.org/10.3390/mi12020211 Hsieh S-S, Lin J-W, Chen J-H (2013) Mixing efficiency of Y-type micromixers with different angles. Int J Heat Fluid Flow 44:130–139 Huang K-R et al (2012) Study of active micromixer driven by electrothermal force. Jpn J Appl Phys 51(4R):047002 Kakuta M, Bessoth FG, Manz A (2001) Microfabricated devices for fluid mixing and their application for chemical synthesis. Chem Rec 1(5):395–405 Kenis PJ, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285(5424):83–85 Koch M et al (1998) Two simple micromixers based on silicon. J Micromech Microeng 8(2):123 Kulkarni A et al (2013) Continuous flow multipoint dosing approach for selectivity engineering in sulfoxidation. Org Process Res Dev 17(10):1293–1299 Kumar V, Paraschivoiu M, Nigam K (2011) Single-phase fluid flow and mixing in microchannels. Chem Eng Sci 66(7):1329–1373 Lee C-Y et al (2011) Microfluidic mixing: a review. Int J Mol Sci 12(5):3263–3287 Lin Y et al (2011) Design and evaluation of an easily fabricated micromixer with three-dimensional periodic perturbation. Chem Eng J 171(1):291–300 Lin MX et al (2013) Continuous labeling of circulating tumor cells with microbeads using a vortex micromixer for highly selective isolation. Biosens Bioelectron 40(1):63–67 Liu RH et al (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9(2):190–197 Liu Y et al (2013) Experimental investigation of passive micromixers conceptual design using the layout optimization method. J Micromech Microeng 23(7):075002 Losey MW et al (2002) Design and fabrication of microfluidic devices for multiphase mixing and reaction. J Microelectromech Syst 11(6):709–717 Lu P, Thapa M, Liu C (2012) Surface friction and boundary layer thickening in transitional flow. In: Advances in modeling of fluid dynamics, p 1. Miyake R, et al. (1993) Micro mixer with fast diffusion. In: [1993] Proceedings IEEE Micro Electro Mechanical Systems. IEEE Nguyen N-T (2011) Micromixers: fundamentals, design and fabrication. William Andrew Nobakht A, Shahsavan M, Paykani A (2013) Numerical study of diodicity mechanism in different Tesla-type microvalves. J Appl Res Technol 11(6):876–885 Ono T et al (2014) Continuous hydrothermal synthesis of Ca1—xSrxTiO3 solid-solution nanoparticles using a T-type micromixer. J Supercrit Fluids 85:159–164 Patankar SV, Spalding DB (1970) Heat and mass transfer in boundary layers: a general calculation procedure. Intertext. Qi Z-Q et al (2012) Mixing effect of biometric flow channel in microbial fuel cells. Appl Energy 100:106–111 Shang M et al (2013) Packed-bed microreactor for continuous-flow adipic acid synthesis from cyclohexene and hydrogen peroxide. Chem Eng Technol 36(6):1001–1009 Stroock AD et al (2002a) Chaotic mixer for microchannels. Science 295(5555):647–651 Stroock AD et al (2002b) Patterning flows using grooved surfaces. Anal Chem 74(20):5306–5312 Thompson SM et al (2014) Numerical investigation of multistaged tesla valves. J Fluids Eng. https://doi.org/10.1115/1.4026620 Treybal RE (1980) Mass transfer operations. New York, pp 466 Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. Pearson education Wang C-T et al (2014) Tesla valves in micromixers. Int J Chem Reactor Eng 12(1):397–403 Wang X, Yang L, Sun F (2021) CFD analysis and RSM optimization of obstacle layout in Tesla micromixer. Int J Chem Reactor Eng 19(10):1045–1055 Weigl BH et al (2001) Design and rapid prototyping of thin-film laminate-based microfluidic devices. Biomed Microdevice 3(4):267–274 Weng C-H et al (2013) An automatic microfluidic system for rapid screening of cancer stem-like cell-specific aptamers. Microfluid Nanofluid 14(3–4):753–765 Yang A-S, et al. (2013) Development of a 3d-tesla micromixer for bio-applications. In: 2013 IEEE International Conference on Mechatronics and Automation. IEEE. Yang A-S et al (2015) A high-performance micromixer using three-dimensional Tesla structures for bio-applications. Chem Eng J 263:444–451 Yu S, Jeon T-J, Kim SM (2012) Active micromixer using electrokinetic effects in the micro/nanochannel junction. Chem Eng J 197:289–294 Yuan S et al (2021) An investigation of flow patterns and mixing characteristics in a cross-shaped micromixer within the laminar regime. Micromach (basel). https://doi.org/10.3390/mi12040462