Optimizing the electronic structure of Fe-doped Co3O4 supported Ru catalyst via metal-support interaction boosting oxygen evolution reaction and hydrogen evolution reaction
Tài liệu tham khảo
Chu, 2012, Nature, 488, 294, 10.1038/nature11475
Kanan, 2008, Science, 321, 1072, 10.1126/science.1162018
Sun, 2022, J. Am. Chem. Soc., 144, 1174, 10.1021/jacs.1c08890
Yang, 2020, Adv. Mater., 32
Pan, 2017, J. Taiwan Inst. Chem. Eng., 74, 154, 10.1016/j.jtice.2017.02.012
Wehmeyer, 2017, Appl. Phys. Rev., 4, 10.1063/1.5001072
Mahmood, 2017, Nat. Nanotechnol., 12, 441, 10.1038/nnano.2016.304
Wang, 2018, Adv. Energy Mater., 8
Bat-Erdene, 2021, Small, 17, 10.1002/smll.202102218
Sun, 2020, ACS Appl. Mater. Interfaces, 12, 48591, 10.1021/acsami.0c14170
Liu, 2021, Nano Energy, 85
Ma, 2014, J. Am. Chem. Soc., 136, 13925, 10.1021/ja5082553
Bao, 2015, Angew. Chem. Int. Ed., 54, 7399, 10.1002/anie.201502226
Gao, 2019, Adv. Mater., 31
Y. Liu, X. Zhang, W. Zhang, et al., Energy Environ. Mater. (2022), https://doi.org/10.1002/eem2.12438.
Wellendorff, 2015, Surf. Sci., 640, 36, 10.1016/j.susc.2015.03.023
Yao, 2019, Nat. Catal., 2, 304, 10.1038/s41929-019-0246-2
Tang, 2017, J. Am. Chem. Soc., 139, 8320, 10.1021/jacs.7b03507
Long, 2014, Angew. Chem. Int. Ed., 53, 7584, 10.1002/anie.201402822
Yan, 2019, Electrochim. Acta, 303, 316, 10.1016/j.electacta.2019.02.091
Yan, 2018, J. Mater. Chem. A, 6, 5678, 10.1039/C8TA00070K
Zhu, 2020, J. Alloy. Compd., 821, 10.1016/j.jallcom.2019.153580
Budiyanto, 2020, ACS Appl. Energy Mater., 3, 8583, 10.1021/acsaem.0c01201
Gao, 2019, Inorg. Chem. Front., 6, 3295, 10.1039/C9QI00852G
da Silva, 2020, Cellulose, 27, 5435, 10.1007/s10570-020-03116-7
Gujrati, 2018, ACS Appl. Mater. Interfaces, 10, 29169, 10.1021/acsami.8b09899
Wang, 2021, Fuel, 289
Wang, 2021, ACS Appl. Mater. Interfaces, 13, 15017, 10.1021/acsami.1c02140
Wang, 2021, Catal. Commun., 153, 106302, 10.1016/j.catcom.2021.106302
Ashok, 2019, Appl. Catal. B: Environ., 254, 300, 10.1016/j.apcatb.2019.05.013
Xu, 2022, J. Energy Chem., 71, 129, 10.1016/j.jechem.2022.03.025
Beltrán, 2014, J. Phys. Chem. C, 118, 13203, 10.1021/jp501933k
Zou, 2022, J. Energy Chem., 72, 509, 10.1016/j.jechem.2022.05.039
Abdelmoneim, 2021, Int. J. Hydrog. Energy, 46, 12915, 10.1016/j.ijhydene.2021.01.113
Gao, 2021, Chin. Chem. Lett., 32, 3591, 10.1016/j.cclet.2021.03.053
Wang, 2016, RSC Adv., 6, 99577, 10.1039/C6RA18503G
Lao, 2018, Catal. Sci. Technol., 8, 4797, 10.1039/C8CY01484A
Lv, 2020, J. Energy Chem., 50, 324, 10.1016/j.jechem.2020.02.055
Freire, 2022, Mater. Today Sustain., 18
Zeng, 2015, J. Mater. Chem. A, 3, 14942, 10.1039/C5TA02974K
Li, 2021, Acta Phys. Chim. Sin., 37, 25
Yao, 2019, Small, 15
Anantharaj, 2020, ChemElectroChem, 7, 2297, 10.1002/celc.202000515
Hefnawy, 2022, J. Alloy. Compd., 896, 10.1016/j.jallcom.2021.162857
Xia, 2021, Acta Phys. Chim. Sin., 37, 180
Budiyanto, 2020, ACS Appl. Energy Mater., 3, 8583, 10.1021/acsaem.0c01201
Wu, 2021, ACS Energy Lett., 6, 2619, 10.1021/acsenergylett.1c00912
Ren, 2019, J. Electroanal. Chem., 848, 10.1016/j.jelechem.2019.113320
Lu, 2022, Chin. Chem. Lett., 33, 2928, 10.1016/j.cclet.2021.10.090
Xiong, 2016, Electrochim. Acta, 222, 999, 10.1016/j.electacta.2016.11.068