Optimizing Coronary Computed Tomography Angiography Using a Novel Deep Learning-Based Algorithm
Tóm tắt
Từ khóa
Tài liệu tham khảo
Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407–477. https://doi.org/10.1093/eurheartj/ehz425
Narula J, Chandrashekhar Y, Ahmadi A, et al. SCCT 2021 Expert consensus document on coronary computed tomographic angiography: a report of the society of cardiovascular computed tomography. J Cardiovasc Comput Tomogr. 2021;15(3):192–217. https://doi.org/10.1016/j.jcct.2020.11.001.
Jiang B, Wang J, Lv X, Cai W. Dual-source CT versus single-source 64-section CT angiography for coronary artery disease: a meta-analysis. Clin Radiol. 2014;69(8):861–869. https://doi.org/10.1016/j.crad.2014.03.023
Hsiao EM, Rybicki FJ, Steigner M. CT coronary angiography: 256-slice and 320-detector row scanners. Curr Cardiol Rep. 2010;12(1):68–75. https://doi.org/10.1007/s11886-009-0075-z
Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359(22):2324–2336. https://doi.org/10.1056/NEJMoa0806576
Dekker MAM den, Smet K de, Bock GH de, Tio RA, Oudkerk M, Vliegenthart R. Diagnostic performance of coronary CT angiography for stenosis detection according to calcium score: systematic review and meta-analysis. Eur Radiol. 2012;22(12):2688–2698. https://doi.org/10.1007/s00330-012-2551-x
Husmann L, Leschka S, Desbiolles L, et al. Coronary artery motion and cardiac phases: dependency on heart rate -- implications for CT image reconstruction. Radiology. 2007;245(2):567–576. https://doi.org/10.1148/radiol.2451061791
Aghayev A, Murphy DJ, Keraliya AR, Steigner ML. Recent developments in the use of computed tomography scanners in coronary artery imaging. Expert Rev Med Devices. 2016;13(6):545–553. https://doi.org/10.1080/17434440.2016.1184968
Sun Z, Choo GH, Ng KH. Coronary CT angiography: current status and continuing challenges. Br J Radiol. 2012;85(1013):495–510. https://doi.org/10.1259/bjr/15296170
Graaf FR de, Schuijf JD, van Velzen JE, et al. Evaluation of contraindications and efficacy of oral Beta blockade before computed tomographic coronary angiography. Am J Cardiol. 2010;105(6):767–772. https://doi.org/10.1016/j.amjcard.2009.10.058
Lossau Née Elss T, Nickisch H, Wissel T, et al. Motion estimation and correction in cardiac CT angiography images using convolutional neural networks. Comput Med Imaging Graph. 2019;76:101640. https://doi.org/10.1016/j.compmedimag.2019.06.001
Lee H, Kim JA, Lee JS, Suh J, Paik SH, Park JS. Impact of a vendor-specific motion-correction algorithm on image quality, interpretability, and diagnostic performance of daily routine coronary CT angiography: influence of heart rate on the effect of motion-correction. Int J Cardiovasc Imaging. 2014;30(8):1603–1612. https://doi.org/10.1007/s10554-014-0499-4
Liang J, Sun Y, Ye Z, et al. Second-generation motion correction algorithm improves diagnostic accuracy of single-beat coronary CT angiography in patients with increased heart rate. Eur Radiol. 2019;29(8):4215–4227. https://doi.org/10.1007/s00330-018-5929-6
Deng F, Tie C, Zeng Y, et al. Correcting motion artifacts in coronary computed tomography angiography images using a dual-zone cycle generative adversarial network. J Xray Sci Technol. 2021;29(4):577–595. https://doi.org/10.3233/XST-210841
Maier J, Lebedev S, Erath J, et al. Deep learning-based coronary artery motion estimation and compensation for short-scan cardiac CT. Med Phys. 2021;48(7):3559–3571. https://doi.org/10.1002/mp.14927
Hahn J, Bruder H, Rohkohl C, et al. Motion compensation in the region of the coronary arteries based on partial angle reconstructions from short-scan CT data. Med Phys. 2017;44(11):5795–5813. https://doi.org/10.1002/mp.12514
Ren P, He Y, Zhu Y, et al. Motion artefact reduction in coronary CT angiography images with a deep learning method. BMC Med Imaging. 2022;22(1):184. https://doi.org/10.1186/s12880-022-00914-2
Leipsic J, Abbara S, Achenbach S, et al. SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2014;8(5):342–358. https://doi.org/10.1016/j.jcct.2014.07.003
Carrascosa P, Deviggiano A, Leipsic JA, et al. Dual energy imaging and intracycle motion correction for CT coronary angiography in patients with intermediate to high likelihood of coronary artery disease. Clin Imaging. 2015;39(6):1000–1005. https://doi.org/10.1016/j.clinimag.2015.07.023
Leipsic J, Labounty TM, Hague CJ, et al. Effect of a novel vendor-specific motion-correction algorithm on image quality and diagnostic accuracy in persons undergoing coronary CT angiography without rate-control medications. J Cardiovasc Comput Tomogr. 2012;6(3):164–171. https://doi.org/10.1016/j.jcct.2012.04.004
Machida H, Lin X-Z, Fukui R, et al. Influence of the motion correction algorithm on the quality and interpretability of images of single-source 64-detector coronary CT angiography among patients grouped by heart rate. Jpn J Radiol. 2015;33(2):84–93. https://doi.org/10.1007/s11604-014-0382-1
Fuchs TA, Stehli J, Dougoud S, et al. Impact of a new motion-correction algorithm on image quality of low-dose coronary CT angiography in patients with insufficient heart rate control. Acad Radiol. 2014;21(3):312–317. https://doi.org/10.1016/j.acra.2013.10.014
Li Z-N, Yin W-H, Lu B, et al. Improvement of image quality and diagnostic performance by an innovative motion-correction algorithm for prospectively ECG triggered coronary CT angiography. PLoS One. 2015;10(11):e0142796. https://doi.org/10.1371/journal.pone.0142796
Rohkohl C, Bruder H, Stierstorfer K, Flohr T. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization. Med Phys. 2013;40(3):31901. https://doi.org/10.1118/1.4789486
Kim S, Chang Y, Ra JB. Cardiac motion correction for helical CT scan with an ordinary pitch. IEEE Trans Med Imaging. 2018;37(7):1587–1596. https://doi.org/10.1109/TMI.2018.2817594
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2016.
Andreini D, Pontone G, Mushtaq S, et al. Low-dose CT coronary angiography with a novel IntraCycle motion-correction algorithm in patients with high heart rate or heart rate variability. Eur Heart J Cardiovasc Imaging. 2015;16(10):1093–1100. https://doi.org/10.1093/ehjci/jev033
Sun J, Okerlund D, Cao Y, et al. Further improving image quality of cardiovascular computed tomography angiography for children with high heart rates using second-generation motion correction algorithm. J Comput Assist Tomogr. 2020;44(5):790–795. https://doi.org/10.1097/RCT.0000000000001035
Liang J, Wang H, Xu L, et al. Impact of SSF on diagnostic performance of coronary computed tomography angiography within 1 heart beat in patients with high heart rate using a 256-row detector computed tomography. J Comput Assist Tomogr. 2018;42(1):54–61. https://doi.org/10.1097/RCT.0000000000000641
