Optimization of the fermentation process of Cordyceps sobolifera Se-CEPS and its anti-tumor activity in vivo

Journal of Biological Engineering - Tập 10 - Trang 1-9 - 2016
Shengli Yang1, Hui Zhang2
1The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People’s Republic of China
2Zhejiang Institute of Quality Inspection Science, Hangzhou, People’s Republic of China

Tóm tắt

Cordyceps sobolifera (C. sobolifera) isolated from cicadae was used as the starting fungus to produce selenium-enriched C. sobolifera extracellular polysaccharide (Se-CEPS). An orthogonal experimental design based on a single-factor experiment was used to optimize the C. sobolifera fermentation conditions, including the potato juice, peptone, and KH2PO4 concentrations. Ultraviolet (UV) and infrared (IR) analyses of CEPS and Se-CEPS were conducted, as well as an in vivo anti-tumor analysis. Under optimal conditions (i.e., 40 potato juice, 0.4 KH2PO4, and 0.5 % peptone), the fermentation yield of Se-CEPS was 5.64 g/L. UV and IR spectra showed that Se-CEPS contained a characteristic absorption peak of a selenite Se = O double bond, demonstrating the successful preparation of Se-CEPS. Activity tests showed that Se-CEPS improved the immune organ index, serum cytokine content, and CD8+ and CD4+ T lymphocyte ratio in colon cancer CT26 tumor-bearing mice, thereby inhibiting tumor growth. When combined with 5-FU, Se-CEPS reduced the toxicity and enhanced the function of 5-FU. The result of these experiments indicated that orthogonal experimental design is a promising method for the optimization of Se-CEPS production, and the Se-CEPS from C. sobolifera can improve the anti-tumor capacity of mice.

Tài liệu tham khảo

St Leger RJ, Charnley AK, Cooper RM. Characterization of cuticle-degrading proteases produced by the entomopathogen Metarhizium anisopliae. Arch Biochem Biophys. 1987;253:221–32. Wang SX, Liu Y, Zhang GQ, Zhao S, Xu F, Geng XL, Wang HX. Cordysobin, a novel alkaline serine protease with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Cordyceps sobolifera. J Biosci Bioeng. 2012;113:42–7. Wu MF, Li PC, Chen CC, Ye SS, Chien CT, Yu CC. Cordyceps sobolifera extract ameliorates lipopolysaccharide-induced renal dysfunction in the rat. Am J Chine Med. 2011;39:523–35. Zhong S, Huijuan P, Fan L, Lu G, Wu Y, Parmeswaran B, Pandey A, Soccol CR. Advances in research of polysaccharides in Cordyceps species. Food sci biotech. 2009;47:304–12. Chiu CH, Chyau CC, Chen CC, Lin CH, Cheng CH, Mong MC. Polysaccharide extract of Cordyceps sobolifera attenuates renal injury in endotoxemic rats. Food Chem Toxicolo. 2014;69:281–8. Chyaua CC, Chen CC, Chen JC, Yang TC, Shu KH, Cheng CH. Mycelia glycoproteins from Cordyceps sobolifera ameliorate cyclosporine-induced renal tubule dysfunction in rats. J Ethnopharmacol. 2014;153:650–8. Jin ZH, Chen YP, Deng YY. The mechanism study of Cordyceps sobolifera mycelium preventing the progression of glomerulosclerosis. Chine J Integrated Traditio Western Nephrol. 2006;6:132–6. Wang L, Chen YP. The effect of artificial cultured Cordyceps sobolifera on the human mesangial cell proliferation and extracellular matrix synthesis. Traditional Chinese Medecine Research. 2006;19:9–11. Smith JE, Rowan NJ, Sullivan R. Medicinal mushrooms: a rapidly developing ales of biotechndogy for cancer therapy and other bioactivities. Biotechnol Lett. 2002;24:1839–45. Rayman M. The importance of selenium to human health. Lancet. 2000;356:233–41. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biot. 2002;60:258–74. Gao Z, Jin C, Qiu S, Li Y, Wang D, Liu C, Li X, Hou R, Yue C, Liu J, Li H, Hu Y. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity. Carbohyd Polym. 2016;136:560–9. Chi A, Li H, Kang C, Guo H, Wang Y, Guo F, Tang L. Anti-fatigue activity of a novel polysaccharide conjugates from Ziyang green tea. Internat J Biol Macromol. 2015;80:566–72. Mao GH, Yi R, Li Q, Wu HY, Jin D, Zhao T, Xue CQ, Zhang DH, Jia QD, Bai YP, Yang LQ, Wu XY. Anti-tumor and immunomodulatory activity of selenium (Se)-polysaccharide from Se-enriched Grifola frondosa. Internat J Biol Macromol. 2016;82:607–13. Raham BG, Berger RG. High fungi for generating aroma components through novel biotechnologies. J Agr Food Chem. 1994;42:2344–8. Wei D, Chen T, Yan M, Zhao W, Li F, Cheng W, Yuan L. Synthesis, characterization, antioxidant activity and neuroprotective effects of selenium polysaccharide from Radix hedysari. Carbohyd Polym. 2015;125:161–8. Yue C, Chen J, Hou R. Effects of selenylation modification on antioxidative activities of Schisandra chinensis polysaccharide. Plosone. 2015;10:1–7. Wang Y, Li Y, Liu Y, Chen X, Wei X. Extraction, characterization and antioxidant activities of Se-enriched tea polysaccharides. Internat J Biol Macromol. 2015;77:76–84. Zhang J, Wang FX, Liu ZW. Synthesis and characterization of seleno-Cynomorium songaricum Rupr. Polysaccharide. Nat Prod Res. 2009;23:1641–51. Zhao BT, Zhang J, Yao J, Song S, Yin ZX, Gao QY. Selenylation modification can enhance antioxidant activity of Potentilla anserina L. polysaccharide. Internat J Biol Macromol. 2013;58:320–08. Wang M, Meng XY, Yang RL, Qin T, Wang XY, Zhang KY, Fei CZ, Li Y, Hu Y, Xue FQ. Cordyceps militaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice. Carbohyd Polym. 2012;89:461–6. Yoshiro T, Kazunari A. Current advances in self-assembled nanogel delivery systems for immunotherapy. Adv Drug Deliver Rev. 2015;95:65–76. Brivio F, Lissoni P, Fumagalli L. Correlation between soluble IL-2 receptor serum levels and regulatory T lymphocytes in patients with solid tumors. Int J Biol Marker. 2008;23:121–2. Gemma R, Carolyn D, Doucette DA, Soutara RS, Liwskia DW. Hoskin Piperine impairs the migration and T cell-activating function of dendritic cells. Toxicol Lett. 2016;242:23–33. Krieg C, Boyman O. Improved IL-2 tumor immunotherapy by selective stimulation of IL-2 receptors on effector lymphocytes. Allergologie. 2011;34:93–3. Bundell CS, Connie J, Andreas S, Bruce WS, Robinson DJN. Functional endogenous cytotoxic T lymphocytes are generated to multiple antigens co-expressed by progressing tumors; after intra-tumoral IL-2 therapy these effector cells eradicate established tumors. Cancer Immunol Immun. 2006;55:933–47. Li C, Han M, Yan W. Studies of cytotoxic mechanisms of IL-2 and IFN-alpha activated lymphocytes on tumor cells. Blood. 1998;92(1):60B–1B. Michihiro I, Wang J, Masaaki T, Wang L, Takuma K, Kagemasa K. Effective anti-tumor adoptive immunotherapy: utilization of exogenous IL-2-independent cytotoxic T lymphocyte clones. Internat Immunol. 2002;14:1459–68. Takahashi K, Harauchi D, Kimura S, Saito S, Monden Y. OK-432 develops CTL and LAK activity in mononuclear cells from regional lymph nodes of lung cancer patients. Internat J Immunopharmaco. 1998;20:375–88. Pradeep CR, Kuttan G. Piperine is a potent inhibitor of nuclear factor-kB (NF-kB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. Internat Immunopharmacol. 2004;4:1795–803. Bae GSS, Kim MSS, Jung WSS, Seo SWW, Yun SWW, Kim SG, Park RKK, Kim ECC. Song HJJ, Park SJJ. Inhibition of lipopolysaccharide-induced inflammatory responses by piperine. Eur J Pharmacol. 2010;642:154–62. Anahit G, Alexey P, Alexander B, Arpine D, Armine H, Amir T, Hayk D, Dmitry S, Denis L, Marina C, Anastasia S, Dmitry T, Edward LN, Michael GA, Ravshan IA. Targeting TLR-4 with a novel pharmaceutical grade plant derived agonist, Immunomax, as a therapeutic strategy for metastatic breast cancer. J Translat Medic. 2014;12:322–8. Yuan XL, Wen Q, Ni MD, Wang LK. Immune formulation-assisted conventional therapy on anti-infective effectiveness of multidrug-resistant Mycobacterium tuberculosis infection mice. Asian Pac J Trop Med. 2016;9:1–5. Li M, Xing S, Zhang H, Shang S, Li X, Ren B, Li G, Chang X, Li Y, Li W. A matrix metalloproteinase inhibitor enhances anti-cytotoxic T lymphocyte antigen-4 antibody immunotherapy in breast cancer by reprogramming the tumor microenvironment. Oncol Repert. 2016;35:1329–39. Chang WT, Lai TH, Chyan YJ, Yin SY, Chen YH, Wei WC, Yang NS. Specific medicinal plant polysaccharides effectively enhance the potency of a DC-based vaccine against mouse mammary tumor metastasis. Plosone. 2015;10(3):1–19. Verçosa Júnior D, Ferraz VP, Duarte ER, Oliveira NJF, Soto-Blanco B, Cassali GD, Melo MM. Effects of different extracts of the mushroom Agaricus blazei Murill on the hematologic profile of mice with Ehrlich tumor. Arq Bras Med Vet Zoo. 2015;67(3):679–88. Lin RS, Liu HH, Wu SQ. Production and in vitro antioxidant activity of exopolysaccharide by a mutant, Cordyceps militaris SU5-08. Internat J Biol Macromol. 2012;51:153–7.