Optimization of the base editor BE4max in chicken somatic cells

Poultry Science - Tập 101 - Trang 102174 - 2022
Tianpeng Xu1, Jing Zhong1, Zhenwen Huang1, Lintian Yu1, Jitan Zheng1, Long Xie1, Lingling Sun1, Xingting Liu1, Yangqing Lu1
1State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China

Tài liệu tham khảo

Chen, 2014, NHE1 gene associated with avian leukosis virus subgroup J infection in chicken, Mol. Biol. Rep., 41, 6519, 10.1007/s11033-014-3535-5 Costello, 2019, Chicken MBD4 regulates immunoglobulin diversification by somatic hypermutation, Front. Immunol., 10, 2540, 10.3389/fimmu.2019.02540 Frewer, 1997, Public concerns in the United Kingdom about general and specific applications of genetic engineering: risk, benefit, and ethics, Sci. Technol. Human Values, 22, 98, 10.1177/016224399702200105 Kim, 2019, Genetic characteristics and polymorphisms in the chicken interferon-induced transmembrane protein (IFITM3) gene, Vet. Res. Commun., 43, 203, 10.1007/s11259-019-09762-y Koblan, 2018, Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction, Nat. Biotechnol., 36, 843, 10.1038/nbt.4172 Komor, 2016, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, 533, 420, 10.1038/nature17946 Krokan, 2002, Uracil in DNA–occurrence, consequences and repair, Oncogene, 21, 8935, 10.1038/sj.onc.1205996 Lee, 2020, Highly elevated base excision repair pathway in primordial germ cells causes low base editing activity in chickens, FASEB J., 34, 15907, 10.1096/fj.202001065RRR Liu, 2018, Highly efficient RNA-guided base editing in rabbit, Nat. Commun., 9, 2717, 10.1038/s41467-018-05232-2 Long, 2019, Species specific differences in use of ANP32 proteins by influenza A virus, Elife, 8, 10.7554/eLife.45066 Ouyang, 2008, Single nucleotide polymorphism (SNP) at the GHR gene and its associations with chicken growth and fat deposition traits, Br. Poult. Sci., 49, 87, 10.1080/00071660801938817 Qin, 2018, Precise A*T to G*C base editing in the zebrafish genome, BMC Biol., 16, 139, 10.1186/s12915-018-0609-1 Rees, 2018, Base editing: precision chemistry on the genome and transcriptome of living cells, Nat. Rev. Genet., 19, 770, 10.1038/s41576-018-0059-1 Shi, 2019, Modeling human point mutation diseases in Xenopus tropicalis with a modified CRISPR/Cas9 system, FASEB J., 33, 6962, 10.1096/fj.201802661R Tyagi, 2020, CRISPR-Cas9 system: a genome-editing tool with endless possibilities, J. Biotechnol., 319, 36, 10.1016/j.jbiotec.2020.05.008 Visnes, 2009, Uracil in DNA and its processing by different DNA glycosylases, Philos. Trans. R. Soc. Lond. B Biol. Sci., 364, 563, 10.1098/rstb.2008.0186 Walsh, 2020, Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness, Proc. Natl. Acad. Sci. U. S. A., 117, 3528, 10.1073/pnas.1907126117 Wang, 2017, Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor, Cell Res., 27, 1289, 10.1038/cr.2017.111 Wang, 2018, Associations between variants of bone morphogenetic protein 7 gene and growth traits in chickens, Br. Poult. Sci., 59, 264, 10.1080/00071668.2018.1454586 Winter, 2019, Targeted exon skipping with AAV-mediated split adenine base editors, Cell Discov., 5, 41, 10.1038/s41421-019-0109-7 Zafra, 2018, Optimized base editors enable efficient editing in cells, organoids and mice, Nat. Biotechnol., 36, 888, 10.1038/nbt.4194 Zanotti, 2016, Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases, DNA Repair (Amst.), 38, 110, 10.1016/j.dnarep.2015.11.011 Zong, 2017, Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion, Nat. Biotechnol., 35, 438, 10.1038/nbt.3811