Tối ưu hóa chiến lược sản xuất, điều kiện gia công và hoàn thiện của bánh quay phân cách
Tóm tắt
Từ khóa
#bánh quay #máy bơm #gia công #điều kiện tối ưu #độ nhám bề mặtTài liệu tham khảo
Kumar, 2014, Production Planning and Process Improvement in an Impeller Manufacturing using Scheduling and OEE Techniques, Procedia Mater. Sci., 5, 1710, 10.1016/j.mspro.2014.07.360
Tang, 2012, Tool Path Generation for Clean-up Machining of Impeller by Point-searching Based Method, Chin. J. Aeronaut., 25, 131, 10.1016/S1000-9361(11)60371-3
Bohez, 1997, A Geometric Modeling and Five-Axis Machining Algorithm for Centrifugal Impellers, J. Manuf. Syst., 16, 422, 10.1016/S0278-6125(97)81700-1
Lee, 2008, Novel forging technology of a magnesium alloy impeller with twisted blades of micro-thickness, CIRP Ann., 57, 261, 10.1016/j.cirp.2008.03.064
Young, 2003, An integrated machining approach for a centrifugal impeller, Int. J. Adv. Manuf. Technol., 21, 556, 10.1007/s00170-002-1382-3
Kaino, 2015, Machining technology for large impellers of centrifugal compressors, Kobelco Technol. Rev., 33, 56
Wu, 2016, Study on performance of integral impeller stiffness based on five-axis machining system, Procedia CIRP, 56, 485, 10.1016/j.procir.2016.10.095
Fan, 2012, Optimizing tool-path generation for three-axis machining of a sculptured impeller blade surface, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 226, 43, 10.1177/0954405411422327
Fan, 2017, A novel tool-path generation method for five-axis flank machining of centrifugal impeller with arbitrary surface blades, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 231, 155, 10.1177/0954405415599943
Li, 2015, Interpolation using non-uniform rational B-spline for the smooth milling of ruled-surface impeller blades, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 229, 1118, 10.1177/0954405415586966
Fan, 2017, Efficient tool path generation for five axis machining of a difficult machined centrifugal impeller, Adv. Mech. Eng., 9, 1, 10.1177/1687814017726484
Fan, 2016, An efficient five-axis machining method of centrifugal impeller based on regional milling, Int. J. Adv. Manuf. Technol., 87, 789, 10.1007/s00170-016-8467-x
Wang, 2019, Multi-parameter optimization of machining impeller surface based on the on-machine measuring technique, Chin. J. Aeronaut., 32, 2000, 10.1016/j.cja.2018.09.005
Arriaza, 2017, Trade-off analysis between machining time and energy consumption in impeller NC machining, Robot Comput.-Integr. Manuf., 43, 164, 10.1016/j.rcim.2015.09.014
Poulachon, 2012, Optimal strategy for finishing impeller blades using 5-axis machining, Int. J. Adv. Manuf. Technol., 58, 573, 10.1007/s00170-011-3424-1
Peng, 2017, Toward a sustainable impeller production: Environmental impact comparison of different impeller manufacturing methods, J. Ind. Ecol., 21, S216, 10.1111/jiec.12628
Young, 2004, A five-axis rough machining approach for a centrifugal impeller, Int. J. Adv. Manuf. Technol., 23, 233, 10.1007/s00170-003-1677-z
Tang, 2018, The study of variational feed rate in 4-axis machining of blades, Int. J. Precis. Eng. Manuf., 19, 1419, 10.1007/s12541-018-0168-y
Heo, 2008, Efficient rough-cut plan for machining an impeller with a 5-axis NC machine, Int. J. Comput. Integr. Manuf., 21, 971, 10.1080/09511920802010761
Azevedo, A. (2013). Rough cut machining for impellers with 3-axis and 5-axis NC machines. Advances in Sustainable and Competitive Manufacturing Systems, Lecture Notes in Mechanical Engineering, Springer Science & Business Media. [1st ed.].
Mentzos, 2015, Design, Numerical Analysis and Manufacture of Radial Pump Impellers with Various Blade Geometries, Int. Rev. Mech. Eng., 9, 104
Kumar, 2013, A study of sliding wear behaviors of Al-7075 alloy and Al-7075 hybrid composite by response surface methodology analysis, Mater. Des., 50, 351, 10.1016/j.matdes.2013.02.038
Li, 2008, Mechanical properties, corrosion behaviors and microstructures of 7075 aluminum alloy with various aging treatments, Trans. Nonferrous Met. Soc. China, 18, 755, 10.1016/S1003-6326(08)60130-2