Optimization of polylactic acid-based medical textiles via electrospinning for healthcare apparel and personal protective equipment

Sustainable Chemistry and Pharmacy - Tập 30 - Trang 100891 - 2022
Johnny Sik Chun Lo1, Walid Daoud2, Chi Yan Tso1, Hau Him Lee1, Irum Firdous1, Bhaskar Jyoti Deka3, Carol Sze Ki Lin1
1School of Energy and Environment, City University of Hong Kong, Hong Kong
2Department of Mechanical Engineering, City University of Hong Kong, Hong Kong
3Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee, 247667, India

Tài liệu tham khảo

Appert-Collin, 2017, Fibrous media, Aerosol Filtration, 31, 10.1016/B978-1-78548-215-1.50002-0 Asran, 2010, Solvent influences the morphology and mechanical properties of electrospun poly(l-lactic acid) scaffold for tissue engineering applications, Macromol. Symp., 294, 153, 10.1002/masy.201050814 2017 Auras, 2004, An overview of polylactides as packaging materials, Macromol. Biosci., 4, 835, 10.1002/mabi.200400043 Balgis, 2017, Synthesis of dual-size cellulose–polyvinylpyrrolidone nanofiber composites via one-step electrospinning method for high-performance air filter, Langmuir, 33, 6127, 10.1021/acs.langmuir.7b01193 Bhattacharyya, 2015, Integration of poly-3-(hydroxybutyrate-co-hydroxyvalerate) production by Haloferax mediterranei through utilization of stillage from Rice-based ethanol manufacture in India and its techno-economic analysis, World J. Microbiol. Biotechnol., 31, 717, 10.1007/s11274-015-1823-4 Casasola, 2014, Electrospun Poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter, Polymer, 55, 4728, 10.1016/j.polymer.2014.06.032 Chen, 2015, Electrospun poly(3-hexylthiophene) nanofibers with highly extended and oriented chains through secondary electric field for high-performance field-effect transistors, Adv. Electr. Mater., 1 Choi, 2021, Biodegradable, efficient, and breathable multi‐Use face mask filter, Adv. Sci., 8 Chuangchote, 2009, Electrospinning of poly(vinyl pyrrolidone): effects of solvents on electrospinnability for the fabrication of poly(P-phenylene vinylene) and tio2nanofibers, J. Appl. Polym. Sci., 114, 2777, 10.1002/app.30637 de Almeida, 2020, Biodegradable ca/CPB electrospun nanofibers for efficient retention of airborne nanoparticles, Process Saf. Environ. Protect., 144, 177, 10.1016/j.psep.2020.07.024 Deitzel, 2001, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, 42, 261, 10.1016/S0032-3861(00)00250-0 Deka, 2019, Electrospun nanofiber membranes incorporating PDMS-aerogel superhydrophobic coating with enhanced flux and improved antiwettability in membrane distillation, Environ. Sci. Technol., 53, 4948, 10.1021/acs.est.8b07254 Desai, 2009, Nanofibrous Chitosan non-wovens for filtration applications, Polymer, 50, 3661, 10.1016/j.polymer.2009.05.058 Duygulu, 2020, Electrospun drug blended poly(lactic acid) (PLA) nanofibers and their antimicrobial activities, J. Polym. Res., 27, 10.1007/s10965-020-02215-0 Haider, 2018, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology, Arab. J. Chem., 11, 1165, 10.1016/j.arabjc.2015.11.015 Haider, 2013, Highly aligned narrow diameter chitosan electrospun nanofibers, J. Polym. Res., 20, 10.1007/s10965-013-0105-9 Haider, 2018, Plastics of the future? the impact of biodegradable polymers on the environment and on Society, Angew. Chem. Int. Ed., 58, 50, 10.1002/anie.201805766 He, 2020, 3D printed and electrospun, transparent, hierarchical polylactic acid mask nanoporous filter, Int. J. Bioprinting, 6, 10.18063/ijb.v6i4.278 Hohman, 2001, Electrospinning and electrically forced jets. II. applications, Phys. Fluids, 13, 2221, 10.1063/1.1384013 Hu, 2017, Efficient zno aqueous nanoparticle catalysed lactide synthesis for poly(lactic acid) fibre production from Food Waste, J. Clean. Prod., 165, 157, 10.1016/j.jclepro.2017.07.067 Iwata, 2015, Biodegradable and bio-based polymers: future prospects of eco-friendly plastics, Angew. Chem. Int. Ed., 54, 3210, 10.1002/anie.201410770 Jacobs, 2010, The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers, J. Appl. Polym. Sci., 115, 3130, 10.1002/app.31396 Kakoria, 2018, A review on biopolymer-based fibers via electrospinning and solution blowing and their applications, Fibers, 6, 45, 10.3390/fib6030045 Kwan, 2018, Techno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly(lactic acid) production, J. Clean. Prod., 181, 72, 10.1016/j.jclepro.2018.01.179 Leung, 2010, Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate, Separ. Purif. Technol., 71, 30, 10.1016/j.seppur.2009.10.017 Li, 2020, Fabrication of multilayered nanofiber scaffolds with a highly aligned nanofiber yarn for anisotropic tissue regeneration, ACS Omega, 5, 24340, 10.1021/acsomega.0c02554 Li, 2013, Effects of working parameters on electrospinning, Springer Briefs Mater., 15, 10.1007/978-3-642-36427-3_2 Matabola, 2013, The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- effect of sodium chloride, J. Mater. Sci., 48, 5475, 10.1007/s10853-013-7341-6 Megelski, 2002, Micro- and nanostructured surface morphology on electrospun polymer fibers, Macromolecules, 35, 8456, 10.1021/ma020444a Mohanty, 2018, Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world, Renew. Energy, 396, 10.4324/9781315793245-107 Niu, 2020, Electrospinning of zein-ethyl cellulose hybrid nanofibers with improved water resistance for food preservation, Int. J. Biol. Macromol., 142, 592, 10.1016/j.ijbiomac.2019.09.134 Park, 2010, Electrospinning and its applications, Adv. Nat. Sci. Nanosci. Nanotechnol., 1, 10.1088/2043-6262/1/4/043002 Patil, 2021, Needleless electrospun phytochemicals encapsulated nanofibre based 3-ply biodegradable mask for combating COVID-19 pandemic, Chem. Eng. J., 416, 10.1016/j.cej.2021.129152 Purwar, 2016, Electrospun sericin/PVA/clay nanofibrous mats for antimicrobial air filtration mask, Fibers Polym., 17, 1206, 10.1007/s12221-016-6345-7 Robinson, 2021, Comparative analysis of fiber alignment methods in electrospinning, Matter, 4, 821, 10.1016/j.matt.2020.12.022 Shi, 2011, Biopolymers, processing, and biodegradation, ACS (Am. Chem. Soc.) Symp. Ser., 117 Sill, 2008, Electrospinning: applications in drug delivery and tissue engineering, Biomaterials, 29, 1989, 10.1016/j.biomaterials.2008.01.011 Song, 2017, Effects of solvent on structures and properties of electrospun poly(ethylene oxide) nanofibers, J. Appl. Polym. Sci., 135 Souzandeh, 2019, Towards sustainable and multifunctional air-filters: a review on biopolymer-based filtration materials, Polym. Rev., 59, 651, 10.1080/15583724.2019.1599391 Thenmozhi, 2017, Electrospun nanofibers: new generation materials for advanced applications, Mater. Sci. Eng., B, 217, 36, 10.1016/j.mseb.2017.01.001 Theron, 2004, Experimental investigation of the governing parameters in the electrospinning of Polymer Solutions, Polymer, 45, 2017, 10.1016/j.polymer.2004.01.024 Topuz, 2019, Electrospinning of uniform nanofibers of polymers of intrinsic microporosity (pim-1): the influence of solution conductivity and relative humidity, Polymer, 178, 10.1016/j.polymer.2019.121610 Vass, 2019, Scale‐up of electrospinning technology: applications in the pharmaceutical industry, WIREs Nanomed. Nanobiotechnol., 12 Wannatong, 2004, Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene, Polym. Int., 53, 1851, 10.1002/pi.1599 Yang, 2018, From Nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications, Prog. Polym. Sci., 81, 80, 10.1016/j.progpolymsci.2017.12.003 Zhang, 2019, Biodegradable electrospun poly(lactic acid) nanofibers for effective PM 2.5 removal, Macromol. Mater. Eng., 304, 10.1002/mame.201900259 Zhao, 2013, Nanofibrous patterns by direct electrospinning of nanofibers onto topographically structured non-conductive substrates, Nanoscale, 5, 4993, 10.1039/c3nr00676j