Optimization of multi-environment trials for genomic selection based on crop models

Springer Science and Business Media LLC - Tập 130 Số 8 - Trang 1735-1752 - 2017
Renaud Rincent1, Estelle Kuhn2, Hervé Monod2, François‐Xavier Oury1, M. Rousset3, Vincent Allard1, Jacques Le Gouis3
1INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 5 chemin de Beaulieu, 63100, Clermont-Ferrand, France
2INRA, MaIAGE, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
3Université Blaise Pascal, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 63178, Aubière Cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agreste (2016) Produits agroalimentaires. Céréales. France. http://agreste.agriculture.gouv.fr/IMG/pdf/Gaf16p122.pdf . Accessed 19 April 2017

Atkinson AC, Donev AN (1992) Optimum experimental designs. Oxford Science Publications, Oxford

Balfourier F, Roussel V, Strelchenko P et al (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 114:1265–1275. doi: 10.1007/s00122-007-0517-1

Bertin N, Martre P, Genard M et al (2010) Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits. J Exp Bot 61:955–967. doi: 10.1093/jxb/erp377

Bogard M, Ravel C, Paux E et al (2014) Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. J Exp Bot 65:5849–5865. doi: 10.1093/jxb/eru328

Brooks RJ, Semenov MA, Jamieson PD (2001) Simplifying Sirius: sensitivity analysis and development of a meta-model for wheat yield prediction. Eur J Agron 14:43–60. doi: 10.1016/S1161-0301(00)00089-7

Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52:707. doi: 10.2135/cropsci2011.06.0299

Bustos-Korts D, Malosetti M, Chapman S, van Eeuwijk F (2016) Modelling of genotype by environment interaction and prediction of complex traits across multiple environments as a synthesis of crop growth modelling, genetics and statistics. In: Yin X, Struik PC (eds) Crop systems biology. Springer International Publishing, Cham, pp 55–82

Butler DG, Smith AB, Cullis BR (2014) On the design of field experiments with correlated treatment effects. J Agric Biol Anviron Stat 19:541–557. doi: 10.1007/s13253-014-0191-0

Chapman SC, Cooper M, Hammer GL (2002) Using crop simulation to generate genotype by environment interaction effects for sorghum in water-limited environments. Aust J Agric Res 53:379–389. doi: 10.1071/AR01070

Chenu K, Chapman SC, Hammer GL et al (2008) Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize. Plant Cell Environ 31:378–391. doi: 10.1111/j.1365-3040.2007.01772.x

Chenu K, Cooper M, Hammer GL, Mathews KL, Dreccer F, Chapman SC (2011) Environment characterization as an aid to wheat improvement: interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia. J Exp Bot 62:1743–1755. doi: 10.1093/jxb/erq459

Cooper M, Technow F, Messina C, Gho C, Totir LR (2016) Use of crop growth models with whole-genome prediction: application to a maize multienvironment trial. Crop Sci 56:1–16. doi: 10.2135/cropsci2015.08.0512

Crossa J, de los Campos G, Maccaferri M et al (2015) Extending the marker × environment interaction model for genomic-enabled prediction and genome-wide association analysis in durum wheat. Crop Sci 5:2193–2209. doi: 10.2135/cropsci2015.04.0260

Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One 3:e3395. doi: 10.1371/journal.pone.0003395

Dumont B, Leemans V, Mansouri M et al (2014) Parameter identification of the STICS crop model, using an accelerated formal MCMC approach. Environ Model Softw 52:121–135. doi: 10.1016/j.envsoft.2013.10.022

Habier D, Fernando RL, Dekkers JCM (2008) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397. doi: 10.1534/genetics.107.081190

Hammer GL, Jordan DR (2007) An integrated systems approach to crop improvement. In: Spiertz JHJ, Struik PC, van Laar HH (eds) Scale and complexity in plant systems research: gene–plant–crop relations. Wageningen UR–Frontis series no. 21. Springer, Dordecht, The Netherlands, pp 45–61

Hammer GL, Kropff MJ, Sinclair TR, Porter JR (2002) Future contributions of crop modelling—from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement. Eur J Agron 18:15–31. doi: 10.1016/S1161-0301(02)00093-X

He J, Le Gouis J, Stratonovitch P et al (2012) Simulation of environmental and genotypic variations of final leaf number and anthesis date for wheat. Eur J Agron 42:22–33. doi: 10.1016/j.eja.2011.11.002

Heslot N, Akdemir D, Sorrells ME, Jannink J-L (2014) Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor Appl Genet 127:463–480. doi: 10.1007/s00122-013-2231-5

Iizumi T, Yokozawa M, Nishimori M (2009) Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: application of a Bayesian approach. Agric For Meteorol 149:333–348. doi: 10.1016/j.agrformet.2008.08.015

Jamieson PD, Munro CA (2000) The calibration of a model for daylength responses in spring wheat for large numbers of cultivars. Agron N Z 30:25–28

Jamieson PD, Semenov MA (2000) Modelling nitrogen uptake and redistribution in wheat. Field Crops Res 68:21–29. doi: 10.1016/S0378-4290(00)00103-9

Jamieson PD, Porter JR, Goudriaan J et al (1998a) A comparison of the models AFRCWHEAT2, CERES-Wheat, sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought. Field Crops Res 55:23–44. doi: 10.1016/S0378-4290(97)00060-9

Jamieson PD, Semenov MA, Brooking IR, Francis GS (1998b) Sirius: a mechanistic model of wheat response to environmental variation. Eur J Agron 8:161–179

Jarquín D, Crossa J, Lacaze X et al (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127:595–607. doi: 10.1007/s00122-013-2243-1

Keating BA, Carberry PS, Hammer GL et al (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18:267–288

Kempton RA, Fox PN (1997) Statistical methods for plant variety evaluation. Chapman & Hall, London

Klein T, Calanca P, Holzkämper A et al (2012) Using farm accountancy data to calibrate a crop model for climate impact studies. Agric Syst 111:23–33. doi: 10.1016/j.agsy.2012.05.001

Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

Leube PC, Geiges A, Nowak W (2012) Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design: assessing the expected data impact. Water Resour Res 48:W02501. doi: 10.1029/2010WR010137

Löffler CM, Wei J, Fast T, Gogerty J, Langton S, Bergman M, Merrill B, Cooper M (2005) Classification of maize environments using crop simulation and geographic information systems. Crop Sci 45:1708–1716

Makowski D, Wallach D, Tremblay M (2002) Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods. Agronomie 22:191–203. doi: 10.1051/agro:2002007

Malosetti M, Bustos-Korts D, Boer MP, van Eeuwijk FA (2016) Predicting responses in multiple environments: issues in relation to genotype × environment interactions. Crop Sci. doi: 10.2135/cropsci2015.05.0311

Martre P, He J, Le Gouis J, Semenov MA (2015a) In silico system analysis of physiological traits determining grain yield and protein concentration for wheat as influenced by climate and crop management. J Exp Bot 66:3581–3598. doi: 10.1093/jxb/erv049

Martre P, Wallach D, Asseng S et al (2015b) Multimodel ensembles of wheat growth: many models are better than one. Glob Change Biol 21:911–925. doi: 10.1111/gcb.12768

Messina CD, Jones JW, Boote KJ, Vallejos CE (2006) A gene-based model to simulate soybean development and yield responses to environment. Crop Sci 46:456. doi: 10.2135/cropsci2005.04-0372

Messina CD, Technow F, Tang T, Totir RL, Gho C, Cooper M (2017) Leveraging biological insight and environmental variation to improve phenotypic prediction: integrating crop growth models (CGM) with whole genome prediction (WGP). bioRxiv. doi: 10.1101/100057

Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

Nakagawa H, Yamagishi J, Miyamoto N et al (2005) Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theor Appl Genet 110:778–786. doi: 10.1007/s00122-004-1905-4

Onogi A, Watanabe M, Mochizuki T, Hayashi T, Nakagawa H, Hasegawa T, Iwata H (2016) Towards integration of genomic selection with crop modeling: the development of an integrated approach to predicting rice heading dates. Theor Appl Genet 129:805–817

Piepho HP, Williams ER (2006) A comparison of experimental designs for selection in breeding trials with nested treatment structure. Theor Appl Genet 113:1505–1513

Prudent M, Lecomte A, Bouchet J-P et al (2011) Combining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration. J Exp Bot 62:907–919. doi: 10.1093/jxb/erq318

Quilot B, Genard M, Lescourret F et al (2005) Simulating genotypic variation of fruit quality in an advanced peachxPrunus davidiana cross. J Exp Bot 56:3071–3081. doi: 10.1093/jxb/eri304

Reymond M, Muller B, Leonardi A et al (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol 131:664–675. doi: 10.1104/pp.013839

Rincent R, Moreau L, Monod H et al (2014) Recovering power in association mapping panels with variable levels of linkage disequilibrium. Genetics 197:375–387. doi: 10.1534/genetics.113.159731

Rousset M, Bonnin I, Remoué C, Falque M, Rhoné B, Veyrieras JB, Madur D, Murigneux A, Balfourier F, Le Gouis J, Santoni S, Goldringer I (2011) Deciphering the genetics of flowering time by an association study on candidate genes in bread wheat (Triticum aestivum L.). Theor Appl Genet 123:907–926. doi: 10.1007/s00122-011-1636-2

Schulz-Streeck T, Ogutu JO, Gordillo A et al (2013) Genomic selection allowing for marker-by-environment interaction. Plant Breed 132:532–538. doi: 10.1111/pbr.12105

Semenov M, Wolf J, Evans L et al (1996) Comparison of wheat simulation models under climate change. II. Application of climate change scenarios. Clim Res 7:271–281. doi: 10.3354/cr007271

Semenov M, Brooks R, Barrow E, Richardson C (1998) Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Clim Res 10:95–107. doi: 10.3354/cr010095

Technow F, Messina CD, Radu Totir LR et al (2015) Integrating crop growth models with whole genome prediction through approximate Bayesian computation. PLoS One 10:e0130855. doi: 10.1371/journal.pone.0130855

Teyssèdre S, Elsen J-M, Ricard A (2012) Statistical distributions of test statistics used for quantitative trait association mapping in structured populations. Genet Sel Evol 44:32. doi: 10.1186/1297-9686-44-32

Uptmoor R, Li J, Schrag T, Stützel H (2011) Prediction of flowering time in Brassica oleracea using a quantitative trait loci-based phenology model: flowering time in Brassica oleracea. Plant Biol. doi: 10.1111/j.1438-8677.2011.00478.x

Van Oijen M, Rougier J, Smith R (2005) Bayesian calibration of process-based forest models: bridging the gap between models and data. Tree Physiol 25:915–927

VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423. doi: 10.3168/jds.2007-0980

Wallach D, Buis S, Lecharpentier P et al (2011) A package of parameter estimation methods and implementation for the STICS crop-soil model. Environ Model Softw 26:386–394. doi: 10.1016/j.envsoft.2010.09.004

Wang K (2008) An analytic study of the power of popular quantitative-trait-locus mapping methods. Behav Genet 38:554–559. doi: 10.1007/s10519-008-9220-5

White JW, Hoogenboom G (1996) Simulating effects of genes for physiological traits in a process-oriented crop model. Agron J 88:416–422

White JW, Herndl M, Hunt LA et al (2008) Simulation-based analysis of effects of and loci on flowering in wheat. Crop Sci 48:678. doi: 10.2135/cropsci2007.06.0318

Whittaker JC, Thompson R, Denham MC (2000) Marker-assisted selection using ridge regression. Genet Res 75:249–252. doi: 10.1017/S0016672399004462

Wöhling T, Geiges A, Nowak W et al (2013) Towards optimizing experiments for maximum-confidence model selection between different soil-plant models. Procedia Environ Sci 19:514–523. doi: 10.1016/j.proenv.2013.06.058

Yin X (2005) QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley. J Exp Bot 56:967–976. doi: 10.1093/jxb/eri090

Yin X, Struik PC (2016) Crop systems biology. Springer, Cham

Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

Zheng B, Biddulph B, Li D et al (2013) Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. J Exp Bot 64:3747–3761. doi: 10.1093/jxb/ert209

Zhong S, Dekkers JCM, Fernando RL, Jannink J-L (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study. Genetics 182:355–364. doi: 10.1534/genetics.108.098277