Tối ưu hóa quá trình vi bao metronidazole trong vi hạt alginate nhằm mục đích giải phóng kiểm soát

Polymer Bulletin - Tập 79 - Trang 8883-8903 - 2021
Elham Sharifi1, Javad Rahbar Shahrouzi1, Hoda Jafarizadeh-Malmiri1, Somayyeh Ghaffari1, Ali Baradar Khoshfetrat
1Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran

Tóm tắt

Để đạt được các điều kiện tối ưu cho việc bao gói metronidazole trong sodium alginate, phương pháp bề mặt phản hồi (RSM) đã được sử dụng để tìm hiểu ảnh hưởng của các biến độc lập (nồng độ alginate và tỷ lệ thuốc so với alginate) đến các biến phụ thuộc bao gồm kích thước hạt trung bình, tỷ lệ thu hồi, tải thuốc và hiệu suất bao gói. Hơn nữa, ảnh hưởng của nồng độ alginate đến hành vi trương nở của vi hạt cũng đã được đánh giá, và cơ chế giải phóng thuốc cũng đã được nghiên cứu. Dựa trên các kết quả, có thể khẳng định rằng vi hạt hình cầu với kích thước hạt trung bình từ 443–665 µm đã được thu được với các tỷ lệ thu hồi, tải thuốc và hiệu suất bao gói lần lượt gần 79.5%, 54.9% và 79.9%. Lượng metronidazole được giải phóng được phát hiện là 68% trong 7 giờ với công thức chứa tỷ lệ thuốc so với polymer là 2:1. Các giá trị tối ưu cho nồng độ alginate và tỷ lệ thuốc so với alginate được xác định lần lượt là 1.4% (w/v) và 2.85 (w/w).

Từ khóa

#metronidazole #alginate #vi hạt #tối ưu hóa #phương pháp bề mặt phản hồi #giải phóng kiểm soát

Tài liệu tham khảo

Deshpande AA, Rhodes CT, Shah NH, Malick AW (1996) Controlled-Release Drug Delivery Systems for Prolonged Gastric Residence: An Overview. Drug Dev Ind Pharm 22(6):531–539 Vasir JK, Tambwekar K, Garg S (2003) Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm 255(1–2):13–32 Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric Systems for Controlled Drug Release. Chem Rev 99(11):3181–3198 Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367 Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK (2008) Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm 68(3):513–525 Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000) Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol 62(1–2):47–55 Zielinski A, B. and P. Aebischer, (1994) Chitosan as a matrix for mammalian cell encapsulation. Biomaterials 15(13):1049–1056 Ninan N, Muthiah M, Park I-K, Elain A, Thomas S, Grohens Y (2013) Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohyd Polym 98(1):877–885 Oliveira MB, Mano JF (2011) Polymer-based microparticles in tissue engineering and regenerative medicine. Biotechnol Prog 27(4):897–912 Grøndahl L, Lawrie G, Jejurikar A (2010) Alginate-based drug delivery devices. Biointegration of Medical Implant Materials. Elsevier, pp 236–266 Tønnesen HH, Karlsen J (2002) Alginate in Drug Delivery Systems. Drug Dev Ind Pharm 28(6):621–630 Bolai Paul SA, Qureshi MJ (2018) Development and evaluation of metronidazole loaded carbopol 934P mucoadhesive microcapsules for sustained drug release at the gastric mucosa. J Appl Pharmaceutical Sci 8(12):020–031 Taylor MJ, Tanna S, Sahota T (2010) In Vivo Study of a Polymeric Glucose-Sensitive Insulin Delivery System Using a Rat Model. J Pharm Sci 99(10):4215–4227 de Souza Ferreira SB, de Assis Dias BR, Obregón CS, Gomes CC, de Araújo Pereira RR, Ribeiro Godoy JS, Estivalet Svidzinski TI, Bruschi ML (2014) Microparticles containing propolis and metronidazole: in vitro characterization, release study and antimicrobial activity against periodontal pathogens. Pharm Dev Technol 19(2):173–180 Rath G, Johal ES, Goyal AK (2011) Development of Serratiopeptidase and Metronidazole Based Alginate Microspheres for Wound Healing. Artificial Cells, Blood Substitutes Biotechnol 39(1):44–50 Gao P, Nie X, Zou M, Shi Y, Cheng G (2011) Recent advances in materials for extended-release antibiotic delivery system. J Antibiot 64:625 Takka S, Ocak ÖH, Acartürk F (1998) Formulation and investigation of nicardipine HCl–alginate gel beads with factorial design-based studies. Eur J Pharm Sci 6(3):241–246 Nayak AK, Pal D (2011) Development of pH-sensitive tamarind seed polysaccharide–alginate composite beads for controlled diclofenac sodium delivery using response surface methodology. Int J Biol Macromol 49(4):784–793 Li G-Y, Zhong M, Zhou Z-D, Zhong Y-D, Ding P, Huang Y (2011) Formulation optimization of chelerythrine loaded O-carboxymethylchitosan microspheres using response surface methodology. Int J Biol Macromol 49(5):970–978 Lin C-C, Metters AT (2006) Hydrogels in controlled release formulations: Network design and mathematical modeling. Adv Drug Deliv Rev 58(12–13):1379–1408 Dash S, PN Murthy, L Nath, and PJAPP Chowdhury (2010). Kinetic modeling on drug release from controlled drug delivery systems. 67(3), 217–223 Serra L, Doménech J, Peppas NA (2006) Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 27(31):5440–5451 Higuchi T (1963) Mechanism of sustained-action medication Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharmaceutical Sci 52(12):1145–1149 Ritger PL, Peppas NA (1987) A simple equation for description of solute release I Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Controlled Release 5(1):23–36 Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release 161(2):351–362 Caballero F, Foradada M, Miñarro M, Pérez-Lozano P, García-Montoya E, Ticó JR, Suñé-Negre JM (2014) Characterization of alginate beads loaded with ibuprofen lysine salt and optimization of the preparation method. Int J Pharm 460(1–2):181–188 Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15(1):25–35 Badwan AA, Abumalooh A, Sallam E, Abukalaf A, Jawan O (1985) A Sustained Release Drug Delivery System Using Calcium Alginate Beads. Drug Dev Ind Pharm 11(2–3):239–256 Odeku OA, Okunlola A, Lamprecht A (2013) Microbead design for sustained drug release using four natural gums. Int J Biol Macromol 58:113–120 Manjanna KM, Rajesh KS, Shivakumar B (2013) Formulation and Optimization of Natural Polysaccharide Hydrogel Microbeads of Aceclofenac Sodium for Oral Controlled Drug Delivery. Am J Medical Sci Medicine 1(1):5–17 Angadi SC, Manjeshwar LS, Aminabhavi TM (2012) Novel composite blend microbeads of sodium alginate coated with chitosan for controlled release of amoxicillin. Int J Biol Macromol 51(1–2):45–55 Patel YL, Sher P, Pawar AP (2006) The effect of drug concentration and curing time on processing and properties of calcium alginate beads containing metronidazole by response surface methodology. AAPS PharmSciTech 7(4):E24–E30 Murata Y, Sasaki N, Miyamoto E, Kawashima S (2000) Use of floating alginate gel beads for stomach-specific drug delivery. Eur J Pharm Biopharm 50(2):221–226