Optimization of fused deposition modeling process parameters: a review of current research and future prospects

Springer Science and Business Media LLC - Tập 3 Số 1 - Trang 42-53 - 2015
Omar Ahmed Mohamed1, Syed H. Masood1, Jahar Bhowmik1
1Swinburne University of Technology

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gebhardt A (2003) Rapid prototyping. Hanser, Munich

Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, Heidelberg

Kai CC, Fai LK, Chu-Sing L (2003) Rapid prototyping: principles and applications in manufacturing. World Scientific Publishing Co. Pte. Ltd., Singapore

Upcraft S, Fletcher R (2003) The rapid prototyping technologies. Assem Autom 23(4):318–330

Mansour S, Hague R (2003) Impact of rapid manufacturing on design for manufacture for injection moulding. Proc Inst Mech Eng Part B 217(4):453–461

Hopkinson N, Hague R, Dickens P (eds) (2006) Rapid manufacturing: an industrial revolution for the digital age. Wiley, New Jersey

Bernard A, Fischer A (2002) New trends in rapid product development. CIRP Ann Manuf Technol 51(2):635–652

Gebhardt A (2012) Understanding additive manufacturing. Carl Hanser Verlag GmbH & Co. KG, Munich

Kai CC, Fai LK, Chu-Sing L (2010) Rapid prototyping: principles and applications. World Scientific Publishing Co. Pte. Ltd., Singapore

Noorani R (2006) Rapid prototyping: principles and applications. Wiley, New Jersey

Montero M, Roundy S, Odell D et al (2001) Material characterization of fused deposition modeling ABS by designed experiments. In: Proceedings of Rapid Prototyping and Manufacturing Conference. Cincinnati, OH, USA

Masood SH (1996) Intelligent rapid prototyping with fused deposition modelling. Rapid Prototyp J 2(1):24–33

Groza JR, Shackelford JF (2010) Materials processing handbook. CRC Press, Boca Raton

Anitha R, Arunachalam S, Radhakrishnan P (2001) Critical parameters influencing the quality of prototypes in fused deposition modelling. J Mater Process Technol 118(1–3):385–388

Nancharaiah T, Raju DR, Raju VR (2010) An experimental investigation on surface quality and dimensional accuracy of FDM components. Int J Emerg Technol 1(2):106–111

Thrimurthulu K, Pandey PM, Reddy NV (2004) Optimum part deposition orientation in fused deposition modeling. Int J Mach Tools Manuf 44(6):585–594

Horvath D, Noorani R, Mendelson M (2007) Improvement of surface roughness on ABS 400 polymer using design of experiments (DOE). Mater Sci Forum 561:2389–2392

Wang CC, Lin TW, Hu SS (2007) Optimizing the rapid prototyping process by integrating the Taguchi method with the gray relational analysis. Rapid Prototyp J 13(5):304–315

Sood AK, Ohdar R, Mahapatra S (2009) Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Mater Des 30(10):4243–4252

Zhang JW, Peng AH (2012) Process-parameter optimization for fused deposition modeling based on Taguchi method. Adv Mater Res 538:444–447

Sahu RK, Mahapatra S, Sood AK (2013) A study on dimensional accuracy of fused deposition modeling (FDM) processed parts using fuzzy logic. J Manuf Sci Prod 13(3):183–197

Lee B, Abdullah J, Khan Z (2005) Optimization of rapid prototyping parameters for production of flexible ABS object. J Mater Process Technol 169(1):54–61

Laeng J, Khan ZA, Khu SY (2006) Optimizing flexible behaviour of bow prototype using Taguchi approach. J Appl Sci 6:622–630

Zhang Y, Chou K (2008) A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis. Proc Inst Mech Eng Part B 222(8):959–968

Nancharaiah T (2011) Optimization of process parameters in FDM process using design of experiments. Int J Emerg Technol 2(1):100–102

Kumar GP, Regalla SP (2012) Optimization of support material and build time in fused deposition modeling (FDM). Appl Mech Mater 110:2245–2251

Ahn SH, Montero M, Odell D et al (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8(4):248–257

Ang KC, Leong KF, Chua CK et al (2006) Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures. Rapid Prototyp J 12(2):100–105

Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31(1):287–295

Percoco G, Lavecchia F, Galantucci LM (2012) Compressive properties of FDM rapid prototypes treated with a low cost chemical finishing. Res J Appl Sci Eng Technol 4(19):3838–3842

Rayegani F, Onwubolu GC (2014) Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int J Adv Manuf Technol 73(1–4):509–519

Masood SH, Mau K, Song WQ (2010) Tensile properties of processed FDM polycarbonate material. Mater Sci Forum 654:2556–2559

Arivazhagan A, Masood SH, Sbarski I (2011) Dynamic mechanical analysis of FDM rapid prototyping processed polycarbonate material. In: Proceedings of the 69th annual technical conference of the society of plastics engineers 2011 (ANTEC 2011), vol 1. Boston, Massachusetts, United States, 1–5 May 2011, pp 950–955

Arivazhagan A, Masood SH (2012) Dynamic mechanical properties of ABS material processed by fused deposition modelling. Int J Eng Res Appl 2(3):2009–2014

Jami H, Masood SH, Song WQ (2013) Dynamic response of FDM made ABS parts in different part orientations. Adv Mater Res 748:291–294

Peace GS (1993) Taguchi methods, a hands-on approach. Addison-Wesley Publishing Company, Reading, MA

Roy RK (2010) A primer on the Taguchi method. Society of Manufacturing Engineers, Dearborn

Montgomery DC (2008) Design and analysis of experiments. Wiley, New Jersey

Wu CJ, Hamada MS (2001) Experiments: planning, analysis, and parameter design optimization. Wiley, New Jersey

Medsker L, Jain LC (1999) Recurrent neural networks: design and applications. CRC Press, Boca Raton

Haykin S (1999) Neural networks: a comprehensive foundation. Prentice-Hall Inc., New Jersey

Correia DS, Gonçalves CV (2005) Comparison between genetic algorithms and response surface methodology in GMAW welding optimization. J Mater Process Technol 160(1):70–76