Optimization of functions whose values are subject to small errors

Torkel Glad1, Allen H. Goldstein1
1Department of Automatic Control, Lund Institute of Technology, Box 725, 22007, Lund 7, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

J. Kiefer and J. Wolfowitz,Stochastic Estimation of the Maximum of a Regression Function. Ann. Math. Stat., 23, pp. 462–466, 1952.

H. J. Kushner,Stochastic Approximation Algorithms for the Local Optimization of Functions with Non-unique Stationary Points. I.E.E.E. Trans. Autom. Control, AC-17, pp. 646–654, 1972.

H. J. Kushner and T. Gavin,Extensions of Kerten's Adaptive Stochastic Approximation Method, Ann. Math. Stat., 1, pp. 851–861, 1973.

R. P. Brent,Algorithms for Minimization without Derivatives. Prentice Hall, 1973.

P. Lancaster,Error Analysis for the Newton-Raphson Method. Num. Math., 9, pp. 55–68, 1966.

A. Goldstein and J. Price,An effective algorithm for minimization, Num. Math., 10, pp. 184–189, 1967.

W. Murray,Second Derivative Methods. In E. Murray, ed., Numerical Methods for Unconstrained Optimization, Academic Press, 1972.

R. Mifflin,A Superlinearly Convergent Algorithm for Minimization without Evaluating Derivatives, Math. Progr. 9, pp. 100–117, 1975.

D. Winfield,Function Minimization by Interpolation in a Data Table, J. Inst. Math. Appl., 12, pp. 339–347, 1973.

L. V. Kantorovich and G. P. Akilov,Functional Analysis in Normed Spaces, McMillan, New York, 1964.