Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tối ưu hóa thủy phân enzyme của vảy cá rô phi đỏ (Oreochromis sp.) để thu hồi peptide hoạt tính sinh học
Tóm tắt
Mục tiêu của nghiên cứu này là tối ưu hóa các điều kiện của quá trình thủy phân enzym (loại enzyme, pH, nhiệt độ (T), nồng độ chất nền (S) và enzyme (E)) nhằm tăng hàm lượng peptide hòa tan (P), hoạt tính chống oxy hóa và độ thủy phân DH (%), trong các dịch thủy phân. Ngoài ra, tác động khi mở rộng quy mô từ hệ thống 0,5 L lên 7,5 L cũng đã được đánh giá. Quá trình thủy phân được thực hiện trong 3 giờ trong hệ thống 500 mL, với enzyme Alcalase® 2.4 L và Flavourzyme® 500 L. Một thiết kế thí nghiệm thứ hai được phát triển với S và E là các yếu tố, với DH, P và hoạt tính chống oxy hóa là các biến đáp ứng. Alcalase® 2.4 L là enzyme hoạt động mạnh nhất, với S và E tối ưu lần lượt là 45 g/L và 4,4 g/L. Các dịch thủy phân từ enzyme này cho thấy hoạt tính chống oxy hóa với IC50 lần lượt là 0,76 g/L, 12 g/L và 8 g/L cho ABTS, FRAP và ICA. Việc mở rộng quy mô không cho thấy tác động tiêu cực đến quá trình thủy phân.
Từ khóa
#Thủy phân enzyme #Alcalase #Flavourzyme #Hoạt tính chống oxy hóa #Cá rô phi đỏTài liệu tham khảo
[1] L.J. Gómez N.A. Gómez J.E. Zapata G. López-García A. Cilla A. Alegría In-vitro antioxidant capacity and cytoprotective/cytotoxic effects upon Caco-2 cells of red tilapia (Oreochromis spp.) viscera hydrolysates Food Res. Int. 120 2019 52 61 10.1016/j.foodres.2019.02.029 L.J. Gómez, N.A. Gómez, J.E. Zapata, G. López-García, A. Cilla, A. Alegría, In-vitro antioxidant capacity and cytoprotective/cytotoxic effects upon Caco-2 cells of red tilapia (Oreochromis spp.) viscera hydrolysates, Food Res. Int. 120 (2019) 52–61. https://doi.org/10.1016/j.foodres.2019.02.029.
[2] O. Martínez-alvarez S. Chamorro A. Brenes Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding : a review Food Res. Int. 73 2015 204 212 O. Martínez-alvarez, S. Chamorro, A. Brenes, Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding : A review, Food Res. Int. 73 (2015) 204–212.
[3] O. Villamil H. Váquiro J.F. Solanilla Fish viscera protein hydrolysates: production, potential applications and functional and bioactive properties Food Chem. 224 2017 160 171 10.1016/j.foodchem.2016.12.057 O. Villamil, H. Váquiro, J.F. Solanilla, Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties, Food Chem. 224 (2017) 160–171. https://doi.org/10.1016/j.foodchem.2016.12.057.
[4] C. Huang J. Kuo S. Wu H. Tsai Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion – hydro-extraction process Food Chem. 190 2016 997 1006 10.1016/j.foodchem.2015.06.066 C. Huang, J. Kuo, S. Wu, H. Tsai, Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion – hydro-extraction process, FOOD Chem. 190 (2016) 997–1006. https://doi.org/10.1016/j.foodchem.2015.06.066.
[5] P. Ambigaipalan A.S. Al-khalifa Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin J. Funct. Foods 18 2015 1125 1137 10.1016/j.jff.2015.01.021 P. Ambigaipalan, A.S. Al-khalifa, Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin, J. Funct. Foods. 18 (2015) 1125–1137. https://doi.org/10.1016/j.jff.2015.01.021.
[6] L. Najafian A.S. Babji Production of bioactive peptides using enzymatic hydrolysis and identification antioxidative peptides from patin (Pangasius sutchi) sarcoplasmic protein hydolysate J. Funct. Foods 9 2014 280 289 10.1016/j.jff.2014.05.003 L. Najafian, A.S. Babji, Production of bioactive peptides using enzymatic hydrolysis and identification antioxidative peptides from patin (Pangasius sutchi) sarcoplasmic protein hydolysate, J. Funct. Foods. 9 (2014) 280–289. https://doi.org/10.1016/j.jff.2014.05.003.
[7] Pa. Harnedy R.J. FitzGerald Bioactive peptides from marine processing waste and shellfish: A review J. Funct. Foods 4 2012 6 24 10.1016/j.jff.2011.09.001 P. a. Harnedy, R.J. FitzGerald, Bioactive peptides from marine processing waste and shellfish: A review, J. Funct. Foods. 4 (2012) 6–24. https://doi.org/10.1016/j.jff.2011.09.001.
[8] S. Benjakul S. Yarnpakdee T. Senphan S.M. Halldorsdottir H.G. Kristinsson Fish Protein Hydrolysates: Production, Bioactivities, and Applications 2014 S. Benjakul, S. Yarnpakdee, T. Senphan, S.M. Halldorsdottir, H.G. Kristinsson, Fish protein hydrolysates : production, bioactivities, and applications, (2014).
[9] X. Wang H. Yu R. Xing P. Li Characterization, Preparation, and Purification of Marine Bioactive Peptides Biomed Res. Int. 2017 10.1155/2017/9746720 2017 X. Wang, H. Yu, R. Xing, P. Li, Characterization, Preparation, and Purification of Marine Bioactive Peptides, Biomed Res. Int. 2017 (2017). https://doi.org/10.1155/2017/9746720.
[10] W. Weng L. Tang B. Wang J. Chen W. Su K. Osako M. Tanaka Antioxidant properties of fractions isolated from blue shark (Prionace glauca) skin gelatin hydrolysates J. Funct. Foods 11 2014 342 351 10.1016/j.jff.2014.10.021 W. Weng, L. Tang, B. Wang, J. Chen, W. Su, K. Osako, M. Tanaka, Antioxidant properties of fractions isolated from blue shark (Prionace glauca) skin gelatin hydrolysates, J. Funct. Foods. 11 (2014) 342–351. https://doi.org/10.1016/j.jff.2014.10.021.
[11] R. Nasri I. Ben A. Bougatef N. Nedjar-arroume P. Dhulster J. Gargouri M. Karra M. Nasri Anticoagulant activities of goby muscle protein hydrolysates Food Chem. 133 2012 835 841 10.1016/j.foodchem.2012.01.101 R. Nasri, I. Ben, A. Bougatef, N. Nedjar-arroume, P. Dhulster, J. Gargouri, M. Karra, M. Nasri, Anticoagulant activities of goby muscle protein hydrolysates, Food Chem. 133 (2012) 835–841. https://doi.org/10.1016/j.foodchem.2012.01.101.
[12] S. Choonpicharn S. Jaturasitha N. Rakariyatham N. Suree H. Niamsup Antioxidant and antihypertensive activity of gelatin hydrolysate from Nile tilapia skin J. Food Sci. Technol. 52 2015 3134 3139 S. Choonpicharn, S. Jaturasitha, N. Rakariyatham, N. Suree, H. Niamsup, Antioxidant and antihypertensive activity of gelatin hydrolysate from Nile tilapia skin, J. Food Sci. Technol. 52 (2015) 3134–3139.
[13] N. Charoenphun B. Cheirsilp N. Sirinupong W. Youravong Calcium-binding peptides derived from tilapia (Oreochromis niloticus) protein hydrolysate Eur. Food Res. Technol. 236 2013 57 63 10.1007/s00217-012-1860-2 N. Charoenphun, B. Cheirsilp, N. Sirinupong, W. Youravong, Calcium-binding peptides derived from tilapia (Oreochromis niloticus) protein hydrolysate, Eur. Food Res. Technol. 236 (2013) 57–63. https://doi.org/10.1007/s00217-012-1860-2.
[14] P. Chuesiang R. Sanguandeekul Protein hydrolysate from tilapia frame: antioxidant and angiotensin I converting enzyme inhibitor properties Int. J. Food Sci. Technol. 50 2015 1436 1444 10.1111/ijfs.12762 P. Chuesiang, R. Sanguandeekul, Protein hydrolysate from tilapia frame: antioxidant and angiotensin I converting enzyme inhibitor properties, Int. J. Food Sci. Technol. 50 (2015) 1436–1444. https://doi.org/10.1111/ijfs.12762.
[15] D. Chen X. Mu H. Huang R. Nie Z. Liu M. Zeng Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats J. Funct. Foods 6 2014 575 584 10.1016/j.jff.2013.12.001 D. Chen, X. Mu, H. Huang, R. Nie, Z. Liu, M. Zeng, Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats, J. Funct. Foods. 6 (2014) 575–584. https://doi.org/10.1016/j.jff.2013.12.001.
[16] J. Xia G. Wang J. Lin Y. Wang J. Chu Advances and practices of bioprocess Adv. Biochem. Eng. Biotechnoldvance Biochem. Eng. Biotechnol. 2015 10.1007/10 J. Xia, G. Wang, J. Lin, Y. Wang, J. Chu, Advances and Practices of Bioprocess, Adv. Biochem Eng Biotechnoldvance Biochem Eng Biotechnol. (2015). https://doi.org/10.1007/10.
[17] G.W. Latimer Official Methods of Analysis of AOAC International 2012 AOAC International Gaithersburg, Md ISBN: 978-0-935584-83-7 G.W. Latimer, Official Methods of Analysis of AOAC International. Gaithersburg, Md.: AOAC International, ISBN: 978-0-935584-83-7, (2012).
[18] J.W. Henderson A. Brooks Improved amino acid methods using agilent ZORBAX eclipse plus C18 columns for a variety of agilent LC instrumentation and separation goals Agil. Technol. 2010 1 16 J.W. Henderson, A. Brooks, Improved Amino Acid Methods using Agilent ZORBAX Eclipse Plus C18 Columns for a Variety of Agilent LC Instrumentation and Separation Goals, Agil. Technol. (2010) 1–16.
[19] J. Adler-Nissen Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid J. Agric. Food Chem. 27 1979 1256 1262 J. Adler-Nissen, Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid, J. Agric. Food Chem. 27 (1979) 1256–1262.
[20] S. Khueychai N. Jangpromma K. Choowongkomon A. Joompang S. Daduang M. Vesaratchavest W. Payoungkiattikun S. Tachibana S. Klaynongsruang A novel ACE inhibitory peptide derived from alkaline hydrolysis of ostrich (Struthio camelus) egg white ovalbumin Process Biochem. 73 2018 235 245 10.1016/j.procbio.2018.07.014 S. Khueychai, N. Jangpromma, K. Choowongkomon, A. Joompang, S. Daduang, M. Vesaratchavest, W. Payoungkiattikun, S. Tachibana, S. Klaynongsruang, A novel ACE inhibitory peptide derived from alkaline hydrolysis of ostrich (Struthio camelus) egg white ovalbumin, Process Biochem. 73 (2018) 235–245. https://doi.org/10.1016/j.procbio.2018.07.014.
[21] J. Adler-Nissen Enzymic Hydrolysis of Food Proteins 1986 Elsevier applied science publishers J. Adler-Nissen, Enzymic hydrolysis of food proteins., Elsevier applied science publishers, 1986.
[22] P. Valencia K. Espinoza A. Ceballos M. Pinto S. Almonacid Novel modeling methodology for the characterization of enzymatic hydrolysis of proteins Process Biochem. 50 2015 589 597 10.1016/j.procbio.2014.12.028 P. Valencia, K. Espinoza, A. Ceballos, M. Pinto, S. Almonacid, Novel modeling methodology for the characterization of enzymatic hydrolysis of proteins, Process Biochem. 50 (2015) 589–597. https://doi.org/10.1016/j.procbio.2014.12.028.
[23] S. Zhong S. Liu J. Cao S. Chen W. Wang X. Qin Fish protein isolates recovered from silver carp (Hypophthalmichthys molitrix) by-products using alkaline pH solubilization and precipitation J. Aquat. Food Prod. Technol. 25 2016 400 413 10.1080/10498850.2013.865282 S. Zhong, S. Liu, J. Cao, S. Chen, W. Wang, X. Qin, Fish Protein Isolates Recovered from Silver Carp (Hypophthalmichthys molitrix) By-Products Using Alkaline pH Solubilization and Precipitation, J. Aquat. Food Prod. Technol. 25 (2016) 400–413. https://doi.org/10.1080/10498850.2013.865282.
[24] S.K.C. Chang Y. Zhang Protein Analysis BT - Food Analysis 2017 10.1007/978-3-319-45776-5_18 S.K.C. Chang, Y. Zhang, Protein Analysis BT - Food Analysis, 2017. https://doi.org/10.1007/978-3-319-45776-5_18.
[25] L. Zheng M. Zhao C. Xiao Q. Zhao G. Su Practical problems when using ABTS assay to assess the radical-scavenging activity of peptides : importance of controlling reaction pH and time Food Chem. 192 2016 288 294 10.1016/j.foodchem.2015.07.015 L. Zheng, M. Zhao, C. Xiao, Q. Zhao, G. Su, Practical problems when using ABTS assay to assess the radical-scavenging activity of peptides : Importance of controlling reaction pH and time, FOOD Chem. 192 (2016) 288–294. https://doi.org/10.1016/j.foodchem.2015.07.015.
[26] R. Pulido L. Bravo F. Saura-Calixto Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay J. Agric. Food Chem. 48 2000 3396 3402 R. Pulido, L. Bravo, F. Saura-Calixto, Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay, J. Agric. Food Chem. 48 (2000) 3396–3402.
[27] J.P. Adjimani P. Asare Antioxidant and free radical scavenging activity of iron chelators Toxicol. Reports. 2 2015 721 728 10.1016/j.toxrep.2015.04.005 J.P. Adjimani, P. Asare, Antioxidant and free radical scavenging activity of iron chelators, Toxicol. Reports. 2 (2015) 721–728. https://doi.org/10.1016/j.toxrep.2015.04.005.
[28] S.A. Hamid N.R.A. Halim N.M. Sarbon Optimization of enzymatic hydrolysis conditions of golden apple snail (Pomacea canaliculata) protein by Alcalase Int. Food Res. J. 22 2015 1615 S.A. Hamid, N.R.A. Halim, N.M. Sarbon, Optimization of enzymatic hydrolysis conditions of Golden Apple snail (Pomacea canaliculata) protein by Alcalase, Int. Food Res. J. 22 (2015) 1615.
[30] P. Valencia M. Pinto S. Almonacid Identification of the key mechanisms involved in the hydrolysis of fish protein by Alcalase Process Biochem. 49 2014 258 264 10.1016/j.procbio.2013.11.012 P.Y. Kang, N.H. Ishak, N.M. Sarbon, Optimization of enzymatic hydrolysis of shortfin scad (Decapterus macrosoma) myofibrillar protein with antioxidant effect using alcalase., Int. Food Res. J. 25 (2018).
[31] B. Palmqvist A. Kadić K. Hägglund A. Petersson G. Lidén Scale-up of high-solid enzymatic hydrolysis of steam-pretreated softwood: the effects of reactor flow conditions Biomass Convers. Biorefinery. 6 2016 173 180 P. Valencia, M. Pinto, S. Almonacid, Identification of the key mechanisms involved in the hydrolysis of fish protein by Alcalase, Process Biochem. 49 (2014) 258–264. https://doi.org/10.1016/j.procbio.2013.11.012.
[32] K. Matmaroh S. Benjakul T. Prodpran A.B. Encarnacion H. Kishimura Characteristics of acid soluble collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus) Food Chem. 129 2011 1179 1186 10.1016/j.foodchem.2011.05.099 B. Palmqvist, A. Kadić, K. Hägglund, A. Petersson, G. Lidén, Scale-up of high-solid enzymatic hydrolysis of steam-pretreated softwood: the effects of reactor flow conditions, Biomass Convers. Biorefinery. 6 (2016) 173–180.
[33] A.A. El-Rashidy A. Gad A.E.H.G. Abu-Hussein S.I. Habib N.A. Badr A.A. Hashem Chemical and biological evaluation of Egyptian Nile Tilapia (Oreochromis niloticas) fish scale collagen Int. J. Biol. Macromol. 79 2015 618 626 10.1016/j.ijbiomac.2015.05.019 K. Matmaroh, S. Benjakul, T. Prodpran, A.B. Encarnacion, H. Kishimura, Characteristics of acid soluble collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus), Food Chem. 129 (2011) 1179–1186. https://doi.org/10.1016/j.foodchem.2011.05.099.
[34] S. Wangtueai A. Noomhorm LWT - food science and technology processing optimization and characterization of gelatin from lizardfish (Saurida spp.) scales LWT - Food Sci. Technol. 42 2009 825 834 10.1016/j.lwt.2008.11.014 A.A. El-Rashidy, A. Gad, A.E.H.G. Abu-Hussein, S.I. Habib, N.A. Badr, A.A. Hashem, Chemical and biological evaluation of Egyptian Nile Tilapia (Oreochromis niloticas) fish scale collagen, Int. J. Biol. Macromol. 79 (2015) 618–626. https://doi.org/10.1016/j.ijbiomac.2015.05.019.
[35] M. Gauza-Włodarczyk L. Kubisz D. Włodarczyk Amino acid composition in determination of collagen origin and assessment of physical factors effects Int. J. Biol. Macromol. 104 2017 987 991 10.1016/j.ijbiomac.2017.07.013 S. Wangtueai, A. Noomhorm, LWT - Food Science and Technology Processing optimization and characterization of gelatin from lizardfish (Saurida spp.) scales, LWT - Food Sci. Technol. 42 (2009) 825–834. https://doi.org/10.1016/j.lwt.2008.11.014.
[36] R. Bansil B.S. Turner Mucin structure, aggregation, physiological functions and biomedical applications Curr. Opin. Colloid Interface Sci. 11 2006 164 170 M. Gauza-Włodarczyk, L. Kubisz, D. Włodarczyk, Amino acid composition in determination of collagen origin and assessment of physical factors effects, Int. J. Biol. Macromol. 104 (2017) 987–991. https://doi.org/10.1016/j.ijbiomac.2017.07.013.
[37] A.T. Girgih R. He S. Malomo M. Offengenden J. Wu R.E. Aluko Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides J. Funct. Foods 6 2014 384 394 R. Bansil, B.S. Turner, Mucin structure, aggregation, physiological functions and biomedical applications, Curr. Opin. Colloid Interface Sci. 11 (2006) 164–170.
[38] J.Y. Je S.Y. Park J.Y. Hwang C.B. Ahn Amino acid composition and in vitro antioxidant and cytoprotective activity of abalone viscera hydrolysate J. Funct. Foods 16 2015 94 103 10.1016/j.jff.2015.04.023 A.T. Girgih, R. He, S. Malomo, M. Offengenden, J. Wu, R.E. Aluko, Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides, J. Funct. Foods. 6 (2014) 384–394.
[39] T. Aspevik H. Egede-Nissen Å. Oterhals A systematic approach to the comparison of cost efficiency of endopeptidases for the hydrolysis of Atlantic salmon (Salmo salar) by-products Food Technol. Biotechnol. 54 2016 421 431 10.17113/ftb.54.04.16.4553 J.Y. Je, S.Y. Park, J.Y. Hwang, C.B. Ahn, Amino acid composition and in vitro antioxidant and cytoprotective activity of abalone viscera hydrolysate, J. Funct. Foods. 16 (2015) 94–103. https://doi.org/10.1016/j.jff.2015.04.023.
[40] C. Chomnawang J. Yongsawatdigul Journal of aquatic food product protein recovery of Tilapia frame by- products by pH-Shift method J. Aquat. Food Prod. Technol. 22 2013 112 119 10.1080/10498850.2011.629077 T. Aspevik, H. Egede-Nissen, Å. Oterhals, A systematic approach to the comparison of cost efficiency of endopeptidases for the hydrolysis of Atlantic salmon (Salmo salar) by-products, Food Technol. Biotechnol. 54 (2016) 421–431. https://doi.org/10.17113/ft b.54.04.16.4553.
[41] A.K. Anal A. Noomhorm P. Vongsawasdi Protein hydrolysates and bioactive peptides from seafood and crustacean waste: their extraction, bioactive properties and industrial perspectives Mar. Proteins Pept. Biol. Act. Appl. 2013 709 735 10.1002/9781118375082 ch36 C. Chomnawang, J. Yongsawatdigul, Journal of Aquatic Food Product Protein Recovery of Tilapia Frame By- Products by pH-Shift Method, J. Aquat. Food Prod. Technol. 22 (2013) 112–119. https://doi.org/10.1080/10498850.2011.629077.
[42] J. Roslan K.F.M. Yunos N. Abdullah S.M.M. Kamal Characterization of fish protein hydrolysate from Tilapia (Oreochromis niloticus) by-product Agric. Agric. Sci. Procedia 2 2014 312 319 10.1016/j.aaspro.2014.11.044 A.K. Anal, A. Noomhorm, P. Vongsawasdi, Protein Hydrolysates and Bioactive Peptides from Seafood and Crustacean Waste: Their Extraction, Bioactive Properties and Industrial Perspectives, Mar. Proteins Pept. Biol. Act. Appl. (2013) 709–735. https://doi.org/10.1002/9781118375082.ch36.
[43] J.A. Morales O.A. Figueroa J.E. Zapata Optimización de hidrólisis enzimática de la fracción globular de sangre bovina por metodología de superficie respuesta y evaluación de sus propiedades antioxidantes Inf. Tecnol. 28 2017 75 86 10.4067/S0718-07642017000200009 J. Roslan, K.F.M. Yunos, N. Abdullah, S.M.M. Kamal, Characterization of Fish Protein Hydrolysate from Tilapia (Oreochromis Niloticus) by-Product, Agric. Agric. Sci. Procedia. 2 (2014) 312–319. https://doi.org/10.1016/j.aaspro.2014.11.044.
[44] A. Noman Y. Xu W.Q. AL-Bukhaiti S.M. Abed A.H. Ali A.H. Ramadhan W. Xia Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme Process Biochem. 67 2018 19 28 J.A. Morales, O.A. Figueroa, J.E. Zapata, Optimización de hidrólisis enzimática de la fracción globular de sangre bovina por metodología de superficie respuesta y evaluación de sus propiedades antioxidantes, Inf. Tecnol. 28 (2017) 75–86. https://doi.org/10.4067/S0718-07642017000200009.
[45] R. Pérez-Gálvez M.C. Almécija F.J. Espejo E.M. Guadix A. Guadix Bi-objective optimisation of the enzymatic hydrolysis of porcine blood protein Biochem. Eng. J. 53 2011 305 310 A. Noman, Y. Xu, W.Q. AL-Bukhaiti, S.M. Abed, A.H. Ali, A.H. Ramadhan, W. Xia, Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme, Process Biochem. 67 (2018) 19–28.
[46] P.G. Gajanan K. Elavarasan B.A. Shamasundar Bioactive and functional properties of protein hydrolysates from fish frame processing waste using plant proteases Environ. Sci. Pollut. Res. 23 2016 24901 24911 10.1007/s11356-016-7618-9 R. Pérez-Gálvez, M.C. Almécija, F.J. Espejo, E.M. Guadix, A. Guadix, Bi-objective optimisation of the enzymatic hydrolysis of porcine blood protein, Biochem. Eng. J. 53 (2011) 305–310.
[48] J. Dumay C. Donnay-Moreno G. Barnathan P. Jaouen J.-P. Bergé Improvement of lipid and phospholipid recoveries from sardine (Sardina pilchardus) viscera using industrial proteases Process Biochem. 41 2006 2327 2332 P.G.Gajanan, K. Elavarasan, B.A. Shamasundar Bioactive and functional properties of protein hydrolysates from fish frame processing waste using plant proteases, Environ. Sci. Pollut. Res., 23, 2016, 24901-24911,10.1007/s11356-016-7618-9
[49] V. Klompong S. Benjakul D. Kantachote K.D. Hayes F. Shahidi Comparative study on antioxidative activity of yellow stripe trevally protein hydrolysate produced from Alcalase and Flavourzyme Int. J. Food Sci. Technol. 43 2008 1019 1026 10.1111/j.1365-2621.2007.01555.x J. Dumay, C. Donnay-Moreno, G. Barnathan, P. Jaouen, J.-P. Bergé, Improvement of lipid and phospholipid recoveries from sardine (Sardina pilchardus) viscera using industrial proteases, Process Biochem. 41 (2006) 2327–2332.
[50] S. Yarnpakdee S. Benjakul H.G. Kristinsson H. Kishimura Antioxidant and sensory properties of protein hydrolysate derived from Nile tilapia (Oreochromis niloticus) by one- and two-step hydrolysis J. Food Sci. Technol. 52 2015 3336 3349 10.1007/s13197-014-1394-7 V. Klompong, S. Benjakul, D. Kantachote, K.D. Hayes, F. Shahidi, Comparative study on antioxidative activity of yellow stripe trevally protein hydrolysate produced from Alcalase and Flavourzyme, Int. J. Food Sci. Technol. 43 (2008) 1019–1026. https://doi.org/10.1111/j.1365-2621.2007.01555.x.
[51] J. Gunasekaran N. Kannuchamy S. Kannaiyan R. Chakraborti V. Gudipati Protein hydrolysates from shrimp (Metapenaeus dobsoni) head waste: optimization of extraction conditions by response surface methodology J. Aquat. Food Prod. Technol. 24 2015 429 442 S. Yarnpakdee, S. Benjakul, H.G. Kristinsson, H. Kishimura, Antioxidant and sensory properties of protein hydrolysate derived from Nile tilapia (Oreochromis niloticus) by one- and two-step hydrolysis, J. Food Sci. Technol. 52 (2015) 3336–3349. https://doi.org/10.1007/s13197-014-1394-7.
[52] S. Yarnpakdee S. Benjakul H.G. Kristinsson H. Kishimura Antioxidant and sensory properties of protein hydrolysate derived from Nile tilapia (Oreochromis niloticus) by one-and two-step hydrolysis J. Food Sci. Technol. 52 2015 3336 3349 J. Gunasekaran, N. Kannuchamy, S. Kannaiyan, R. Chakraborti, V. Gudipati, Protein hydrolysates from shrimp (Metapenaeus dobsoni) head waste: optimization of extraction conditions by response surface methodology, J. Aquat. Food Prod. Technol. 24 (2015) 429–442.
[53] P.J. García-Moreno I. Batista C. Pires N.M. Bandarra F.J. Espejo-Carpio A. Guadix E.M. Guadix Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species Food Res. Int. 65 2014 469 476 10.1016/j.foodres.2014.03.061 S. Yarnpakdee, S. Benjakul, H.G. Kristinsson, H. Kishimura, Antioxidant and sensory properties of protein hydrolysate derived from Nile tilapia (Oreochromis niloticus) by one-and two-step hydrolysis, J. Food Sci. Technol. 52 (2015) 3336–3349.
[54] M. Opheim R. Šližytė H. Sterten F. Provan E. Larssen N.P. Kjos Hydrolysis of Atlantic salmon (Salmo salar) rest raw materials—effect of raw material and processing on composition, nutritional value, and potential bioactive peptides in the hydrolysates Process Biochem. 50 2015 1247 1257 P.J. García-Moreno, I. Batista, C. Pires, N.M. Bandarra, F.J. Espejo-Carpio, A. Guadix, E.M. Guadix, Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species, Food Res. Int. 65 (2014) 469–476. https://doi.org/10.1016/j.foodres.2014.03.061.
[55] S. Beaubier X. Framboisier I. Ioannou O. Galet R. Kapel Simultaneous quantification of the degree of hydrolysis, protein conversion rate and mean molar weight of peptides released in the course of enzymatic proteolysis J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1105 2019 1 9 10.1016/j.jchromb.2018.12.005 M. Opheim, R. Šližytė, H. Sterten, F. Provan, E. Larssen, N.P. Kjos, Hydrolysis of Atlantic salmon (Salmo salar) rest raw materials—Effect of raw material and processing on composition, nutritional value, and potential bioactive peptides in the hydrolysates, Process Biochem. 50 (2015) 1247–1257.
[56] M. Karamać A. Kosińska-Cagnazzo A. Kulczyk Use of different proteases to obtain flaxseed protein hydrolysates with antioxidant activity Int. J. Mol. Sci. 17 2016 10.3390/ijms17071027 S. Beaubier, X. Framboisier, I. Ioannou, O. Galet, R. Kapel, Simultaneous quantification of the degree of hydrolysis, protein conversion rate and mean molar weight of peptides released in the course of enzymatic proteolysis, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1105 (2019) 1–9. https://doi.org/10.1016/j.jchromb.2018.12.005.
[57] A.T. Girgih R. He F.M. Hasan C.C. Udenigwe T.A. Gill R.E. Aluko Evaluation of the in vitro antioxidant properties of a cod (Gadus morhua) protein hydrolysate and peptide fractions Food Chem. 173 2015 652 659 10.1016/j.foodchem.2014.10.079 M. Karamać, A. Kosińska-Cagnazzo, A. Kulczyk, Use of different proteases to obtain flaxseed protein hydrolysates with antioxidant activity, Int. J. Mol. Sci. 17 (2016). https://doi.org/10.3390/ijms17071027.
[58] M. Silveira Coelho S. de Araujo Aquino J. Machado Latorres M. De las Mercedes Salas-Mellado, in vitro and in vivo antioxidant capacity of chia protein hydrolysates and peptides Food Hydrocoll. 91 2019 19 25 10.1016/j.foodhyd.2019.01.018 A.T. Girgih, R. He, F.M. Hasan, C.C. Udenigwe, T.A. Gill, R.E. Aluko, Evaluation of the in vitro antioxidant properties of a cod (Gadus morhua) protein hydrolysate and peptide fractions, Food Chem. 173 (2015) 652–659. https://doi.org/10.1016/j.foodchem.2014.10.079.
[59] C.C. Udenigwe R.E. Aluko Chemometric Analysis of the Amino Acid Requirements of Antioxidant Food Protein Hydrolysates 2011 3148 3161 10.3390/ijms12053148 M. Silveira Coelho, S. de Araujo Aquino, J. Machado Latorres, M. de las Mercedes Salas-Mellado, In vitro and in vivo antioxidant capacity of chia protein hydrolysates and peptides, Food Hydrocoll. 91 (2019) 19–25. https://doi.org/10.1016/j.foodhyd.2019.01.018.
[60] R. a Copeland a J. Wiley ENZYMES A Practical Introduction 2000 10.1021/jm020467f C.C. Udenigwe, R.E. Aluko, Chemometric Analysis of the Amino Acid Requirements of Antioxidant Food Protein Hydrolysates, (2011) 3148–3161. https://doi.org/10.3390/ijms12053148.
[61] J.E. Zapata Montoya D.E. Giraldo-Rios A.J. Baéz-Suarez Kinetic modeling of the enzymatic hydrolysis of proteins of visceras from red tilapia (Oreochromis sp.): effect of substrate and enzyme concentration Vitae 25 2018 17 25 10.17533/udea.vitae.v25n1a03 R. a Copeland, a J. Wiley, ENZYMES A Practical Introduction, 2000. https://doi.org/10.1021/jm020467f.
[62] M. Okuda N. Ogawa M. Takeguchi A. Hashimoto M. Tagaya S. Chen N. Hanagata T. Ikoma Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography Microsc. Microanal. 17 2011 788 798 J.E. Zapata Montoya, D.E. Giraldo-Rios, A.J. Baéz-Suarez, Kinetic modeling of the enzymatic hydrolysis of proteins of visceras from red tilapia (Oreochromis sp.): Effect of substrate and enzyme concentration, Vitae. 25 (2018) 17–25. https://doi.org/10.17533/udea.vitae.v25n1a03.
[63] Y. Zhang D. Tu Q. Shen Z. Dai Fish scale valorization by hydrothermal pretreatment followed by enzymatic hydrolysis for gelatin hydrolysate production Molecules 24 2019 1 14 10.3390/molecules24162998 M. Okuda, N. Ogawa, M. Takeguchi, A. Hashimoto, M. Tagaya, S. Chen, N. Hanagata, T. Ikoma, Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography, Microsc. Microanal. 17 (2011) 788–798.
[64] Y. Deng C.I. Butré P.A. Wierenga Influence of substrate concentration on the extent of protein enzymatic hydrolysis Int. Dairy J. 86 2018 39 48 Y. Zhang, D. Tu, Q. Shen, Z. Dai, Fish scale valorization by hydrothermal pretreatment followed by enzymatic hydrolysis for gelatin hydrolysate production, Molecules. 24 (2019) 1–14. https://doi.org/10.3390/molecules24162998.
[65] C.I. Butré P.A. Wierenga H. Gruppen Effects of ionic strength on the enzymatic hydrolysis of diluted and concentrated whey protein isolate J. Agric. Food Chem. 60 2012 5644 5651 Y. Deng, C.I. Butré, P.A. Wierenga, Influence of substrate concentration on the extent of protein enzymatic hydrolysis, Int. Dairy J. 86 (2018) 39–48.
[66] S.N.K.M. Putra N.H. Ishak N.M. Sarbon Biocatalysis and Agricultural Biotechnology Preparation and characterization of physicochemical properties of golden apple snail (Pomacea canaliculata) protein hydrolysate as a ff ected by di ff erent proteases Biocatal. Agric. Biotechnol. 13 2018 123 128 10.1016/j.bcab.2017.12.002 C.I. Butré, P.A. Wierenga, H. Gruppen, Effects of ionic strength on the enzymatic hydrolysis of diluted and concentrated whey protein isolate, J. Agric. Food Chem. 60 (2012) 5644–5651.
[67] M. Blanco J.A. Vázquez R.I. Pérez-Martín C.G. Sotelo Hydrolysates of fish skin collagen: an opportunity for valorizing fish industry byproducts Mar. Drugs 15 2017 131 S.N.K.M. Putra, N.H. Ishak, N.M. Sarbon, Biocatalysis and Agricultural Biotechnology Preparation and characterization of physicochemical properties of golden apple snail (Pomacea canaliculata) protein hydrolysate as a ff ected by di ff erent proteases, Biocatal. Agric. Biotechnol. 13 (2018) 123–128. https://doi.org/10.1016/j.bcab.2017.12.002.
[68] S. Sai-Ut S. Benjakul P. Sumpavapol H. Kishimura Effect of drying methods on odorous compounds and antioxidative activity of gelatin hydrolysate produced by protease from B. Amyloliquefaciens H11 Dry. Technol. 32 2014 1552 1559 M. Blanco, J.A. Vázquez, R.I. Pérez-Martín, C.G. Sotelo, Hydrolysates of fish skin collagen: An opportunity for valorizing fish industry byproducts, Mar. Drugs. 15 (2017) 131.
[69] S. Choonpicharn S. Jaturasitha Antioxidant and Antihypertensive Activity of Gelatin Hydrolysate from Nile Tilapia Skin 2014 10.1007/s13197-014-1581-6 S. Sai-Ut, S. Benjakul, P. Sumpavapol, H. Kishimura, Effect of drying methods on odorous compounds and antioxidative activity of gelatin hydrolysate produced by protease from B. amyloliquefaciens H11, Dry. Technol. 32 (2014) 1552–1559.
[70] O.A. Figueroa J.E. Zapata C.P. Sánchez Optimización de la hidrólisis enzimática de proteínas de plasma bovino Inf. Tecnol. 27 2016 39 52 10.4067/S0718-07642016000200006 S. Choonpicharn, S. Jaturasitha, Antioxidant and antihypertensive activity of gelatin hydrolysate from Nile tilapia skin, (2014). https://doi.org/10.1007/s13197-014-1581-6.
[71] D. Kumar M.K. Chatli Enzymatic Hydrolysis of Camel Milk Casein and Its Antioxidant Properties 2016 10.1007/s13594-015-0275-9 O.A. Figueroa, J.E. Zapata, C.P. Sánchez, Optimización de la hidrólisis enzimática de proteínas de plasma bovino, Inf. Tecnol. 27 (2016) 39–52. https://doi.org/10.4067/S0718-07642016000200006.
[72] J.E. Zapata M. Moya O.A. Figueroa Hidrólisis Enzimática de la Proteína de Vísceras de Trucha Arco íris (Oncorhynchus mykiss): efecto del tipo de enzima, Temperatura, pH y velocidad de agitación Inf. Tecnológica 30 2019 63 72 D. Kumar, M.K. Chatli, Enzymatic hydrolysis of camel milk casein and its antioxidant properties, (2016). https://doi.org/10.1007/s13594-015-0275-9.
[73] C.M. Montone A.L. Capriotti C. Cavaliere G. La Barbera S. Piovesana R.Z. Chiozzi A. Laganà Characterization of antioxidant and angiotensin-converting enzyme inhibitory peptides derived from cauli fl ower by-products by multidimensional liquid chromatography and bioinformatics J. Funct. Foods 44 2018 40 47 10.1016/j.jff.2018.02.022 J.E. Zapata, M. Moya, O.A. Figueroa, Hidrólisis Enzimática de la Proteína de Vísceras de Trucha Arco Íris (Oncorhynchus mykiss): Efecto del tipo de Enzima, Temperatura, pH y Velocidad de Agitación, Inf. Tecnológica. 30 (2019) 63–72.
[74] D. Martínez C. Menéndez L. Hernández A. Sobrino L.E. Trujillo I. Rodríguez E.R. Pérez Scaling-up batch conditions for ef fi cient sucrose hydrolysis catalyzed by an immobilized recombinant Pichia pastoris cells in a stirrer tank reactor EJBT 25 2017 39 42 10.1016/j.ejbt.2016.11.003 C.M. Montone, A.L. Capriotti, C. Cavaliere, G. La Barbera, S. Piovesana, R.Z. Chiozzi, A. Laganà, Characterization of antioxidant and angiotensin-converting enzyme inhibitory peptides derived from cauli fl ower by-products by multidimensional liquid chromatography and bioinformatics, J. Funct. Foods. 44 (2018) 40–47. https://doi.org/10.1016/j.jff.2018.02.022.
[75] V. Sotaniemi S. Taskila H. Ojamo J. Tanskanen Biomass and Bioenergy Controlled feeding of lignocellulosic substrate enhances the performance of fed-batch enzymatic hydrolysis in a stirred tank reactor Biomass Bioenergy 91 2016 271 277 10.1016/j.biombioe.2016.05.037 D. Martínez, C. Menéndez, L. Hernández, A. Sobrino, L.E. Trujillo, I. Rodríguez, E.R. Pérez, Scaling-up batch conditions for ef fi cient sucrose hydrolysis catalyzed by an immobilized recombinant Pichia pastoris cells in a stirrer tank reactor, EJBT. 25 (2017) 39–42. https://doi.org/10.1016/j.ejbt.2016.11.003.
[76] L.J. Gómez J.E. Zapata Efecto del nivel de grasa y velocidad de agitación en la hidrolisis enzimática de vísceras de tilapia roja (orechromis sp.) Inf. Tecnol. 28 2017 47 56 10.4067/S0718-07642017000400007 V. Sotaniemi, S. Taskila, H. Ojamo, J. Tanskanen, Biomass and Bioenergy Controlled feeding of lignocellulosic substrate enhances the performance of fed-batch enzymatic hydrolysis in a stirred tank reactor, Biomass and Bioenergy. 91 (2016) 271–277. https://doi.org/10.1016/j.biombioe.2016.05.037.