Optimization of electron microscopy for human brains with long-term fixation and fixed-frozen sections

Acta Neuropathologica Communications - Tập 2 - Trang 1-10 - 2014
Xiao-Bo Liu1, Cynthia M Schumann2,3
1University of California, Davis, School of Medicine, Department of Pathology and Laboratory Medicine; Electron Microscopy Laboratory, Sacramento, USA
2University of California, Davis, School of Medicine, Department of Psychiatry and Behavioral Sciences, MIND Institute, Sacramento, USA
3UC Davis MIND Institute, Sacramento, USA

Tóm tắt

Abnormal connectivity across brain regions underlies many neurological disorders including multiple sclerosis, schizophrenia and autism, possibly due to atypical axonal organization within white matter. Attempts at investigating axonal organization on post-mortem human brains have been hindered by the availability of high-quality, morphologically preserved tissue, particularly for neurodevelopmental disorders such as autism. Brains are generally stored in a fixative for long periods of time (often greater than 10 years) and in many cases, already frozen and sectioned on a microtome for histology and immunohistochemistry. Here we present a method to assess the quality and quantity of axons from long-term fixed and frozen-sectioned human brain samples to demonstrate their use for electron microscopy (EM) measures of axonal ultrastructure. Six samples were collected from white matter below the superior temporal cortex of three typically developing human brains and prepared for EM analyses. Five samples were stored in fixative for over 10 years, two of which were also flash frozen and sectioned on a freezing microtome, and one additional case was fixed for 3 years and sectioned on a freezing microtome. In all six samples, ultrastructural qualitative and quantitative analyses demonstrate that myelinated axons can be identified and counted on the EM images. Although axon density differed between brains, axonal ultrastructure and density was well preserved and did not differ within cases for fixed and frozen tissue. There was no significant difference between cases in axon myelin sheath thickness (g-ratio) or axon diameter; approximately 70% of axons were in the small (0.25 μm) to medium (0.75 μm) range. Axon diameter and g-ratio were positively correlated, indicating that larger axons may have thinner myelin sheaths. The current study demonstrates that long term formalin fixed and frozen-sectioned human brain tissue can be used for ultrastructural analyses. Axon integrity is well preserved and can be quantified using the methods presented here. The ability to carry out EM on frozen sections allows for investigation of axonal organization in conjunction with other cellular and histological methods, such as immunohistochemistry and stereology, within the same brain and even within the same frozen cut section.

Tài liệu tham khảo

Fields RD: White matter in learning, cognition and psychiatric disorders. Trends Neurosci 2008, 31: 361–370. 10.1016/j.tins.2008.04.001 LaMantia AS, Rakic P: Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 1990, 10: 2156–2175. Makinodan M, Rosen KM, Ito S, Corfas G: A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 2012, 337: 1357–1360. 10.1126/science.1220845 Nave KA: Neuroscience: An ageing view of myelin repair. Nature 2008, 455: 478–479. 10.1038/455478a Zikopoulos B, Barbas H: Changes in prefrontal axons may disrupt the network in autism. J Neurosci 2010, 30: 14595–14609. 10.1523/JNEUROSCI.2257-10.2010 Uranova NA, Vikhreva OV, Rachmanova VI, Orlovskaya DD: Ultrastructural alterations of myelinated fibers and oligodendrocytes in the prefrontal cortex in schizophrenia: a postmortem morphometric study. Schizophr Res Treatment 2011, 2011: 325789. Concha L, Livy DJ, Beaulieu C, Wheatley BM, Gross DW: In vivo diffusion tensor imaging and histopathology of the fimbria-fornix in temporal lobe epilepsy. J Neurosci 2010, 30: 996–1002. 10.1523/JNEUROSCI.1619-09.2010 Freese JL, Amaral DG: The organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. J Comp Neurol 2005, 486: 295–317. 10.1002/cne.20520 Schumann CM, Amaral DG: Stereological estimation of the number of neurons in the human amygdaloid complex. J Comp Neurol 2005, 491: 320–329. 10.1002/cne.20704 Peters A, Palay S, Webster H: The Fine Structure of the Nervous System. New York: Oxford University Press; 1991. Chomiak T, Hu B: What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach. PLoS One 2009, 4: e7754. 10.1371/journal.pone.0007754 Marcus J, Honigbaum S, Shroff S, Honke K, Rosenbluth J, Dupree JL: Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 2006, 53: 372–381. 10.1002/glia.20292 Freese JL, Amaral DG: Synaptic organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. J Comp Neurol 2006, 496: 655–667. 10.1002/cne.20945 Liu XB, Honda CN, Jones EG: Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat. J Comp Neurol 1995, 352: 69–91. 10.1002/cne.903520106 Liu XB, Warren RA, Jones EG: Synaptic distribution of afferents from reticular nucleus in ventroposterior nucleus of cat thalamus. J Comp Neurol 1995, 352: 187–202. 10.1002/cne.903520203 Needleman LA, Liu XB, El-Sabeawy F, Jones EG, McAllister AK: MHC class I molecules are present both pre- and postsynaptically in the visual cortex during postnatal development and in adulthood. Proc Natl Acad Sci U S A 2010, 107: 16999–17004. 10.1073/pnas.1006087107 Shen Y, Liu XB, Pleasure DE, Deng W: Axon-glia synapses are highly vulnerable to white matter injury in the developing brain. J Neurosci Res 2012, 90: 105–121. 10.1002/jnr.22722 Perge JA, Niven JE, Mugnaini E, Balasubramanian V, Sterling P: Why do axons differ in caliber? J Neurosci 2012, 32: 626–638. 10.1523/JNEUROSCI.4254-11.2012 Marner L, Nyengaard JR, Tang Y, Pakkenberg B: Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 2003, 462: 144–152. 10.1002/cne.10714 Zhang K, Sejnowski TJ: A universal scaling law between gray matter and white matter of cerebal cortex. Proc Natl Acad Sci USA 2000, 97: 5621–5626. 10.1073/pnas.090504197 Nave KA: Myelination and support of axonal integrity by glia. Nature 2010, 468: 244–252. 10.1038/nature09614 Alba-Ferrara LM, de Erausquin GA: What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia. Front Integr Neurosci 2013, 7: 9. Fujino J, Takahashi H, Miyata J, Sugihara G, Kubota M, Sasamoto A, Fujiwara H, Aso T, Fukuyama H, Murai T: Impaired empathic abilities and reduced white matter integrity in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2014, 48: 117–123. Hoistad M, Heinsen H, Wicinski B, Schmitz C, Hof PR: Stereological assessment of the dorsal anterior cingulate cortex in schizophrenia: absence of changes in neuronal and glial densities. Neuropathol Appl Neurobiol 2013, 39: 348–361. 10.1111/j.1365-2990.2012.01296.x Lewis DA: Cortical circuit dysfunction and cognitive deficits in schizophrenia–implications for preemptive interventions. Eur J Neurosci 2012, 35: 1871–1878. 10.1111/j.1460-9568.2012.08156.x Takahashi N, Sakurai T, Davis KL, Buxbaum JD: Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol 2011, 93: 13–24. 10.1016/j.pneurobio.2010.09.004 Voineskos AN, Foussias G, Lerch J, Felsky D, Remington G, Rajji TK, Lobaugh N, Pollock BG, Mulsant BH: Neuroimaging evidence for the deficit subtype of schizophrenia. JAMA Psychiatry 2013, 70: 472–480. 10.1001/jamapsychiatry.2013.786 Glausier JR, Fish KN, Lewis DA: Altered parvalbumin basket cell inputs in the dorsolateral prefrontal cortex of schizophrenia subjects. Mol Psychiatry 2014, 19: 140. 10.1038/mp.2013.177 McFadden K, Minshew NJ: Evidence for dysregulation of axonal growth and guidance in the etiology of ASD. Front Hum Neurosci 2013, 7: 671. Zikopoulos B, Barbas H: Altered neural connectivity in excitatory and inhibitory cortical circuits in autism. Front Hum Neurosci 2013, 7: 609. Schumann CM, Nordahl CW: Bridging the gap between MRI and postmortem research in autism. Brain Res 2011, 1380: 175–186. Pakkenberg B, Pelvig D, Marner L, Bundgaard MJ, Gundersen HJ, Nyengaard JR, Regeur L: Aging and the human neocortex. Exp Gerontol 2003, 38: 95–99. 10.1016/S0531-5565(02)00151-1