Optimization of electro-discharge machining process using rapid tool electrodes via metaheuristic algorithms
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gülcan O, Uslan İ, Usta Y, Çoğun C (2016) Performance and surface alloying characteristics of Cu–Cr and Cu–Mo powder metal tool electrodes in electrical discharge machining. Mach Sci Technol 20:523–546. https://doi.org/10.1080/10910344.2016.1191031
Arthur A, Dickens PM, Cobb RC (1996) Using rapid prototyping to produce electrical discharge machining electrodes. Rapid Prototyp J 2:4–12
Dimla DE, Hopkinson N, Rothe H (2004) Investigation of complex rapid EDM electrodes for rapid tooling applications. Int J Adv Manuf Technol 23:249–255. https://doi.org/10.1007/s00170-003-1709-8
Padhi SK, Mahappatra SS, Das HC (2017) Performance of a Copper Electroplated Plastic Electrical Discharge Machining Electrode Compared to a Copper Electrode. Int J Pure Appl Math 114:459–469
Padhi SK, Mahapatra SS, Padhi R, Das HC (2018) Performance analysis of a thick copper-electroplated FDM ABS plastic rapid tool EDM electrode. Adv Manuf 6:442–456. https://doi.org/10.1007/s40436-018-0238-5
Equbal A, Equbal MI, Sood AK (2019) An investigation on the feasibility of fused deposition modelling process in EDM electrode manufacturing. CIRP J Manuf Sci Technol 26:10–25. https://doi.org/10.1016/j.cirpj.2019.07.001
Zhao J, Li Y, Zhang J, Yu C, Zhang Y (2003) Analysis of the wear characteristics of an EDM electrode made by selective laser sintering. J Mater Process Technol 138:475–478. https://doi.org/10.1016/S0924-0136(03)00122-5
Czelusniak T, Amorim FL, Lohrengel A, Higa CF (2014) Development and application of copper-nickel zirconium diboride as EDM electrodes manufactured by selective laser sintering. Int J Adv Manuf Technol 72:905–917. https://doi.org/10.1007/s00170-014-5728-4
Czelusniak T, Amorim FL, Higa CF, Lohrengel A (2014) Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering. Int J Adv Manuf Technol 72:1503–1512. https://doi.org/10.1007/s00170-014-5765-z
Rizvi SAH, Agarwal S, Singh A, Bhardwaj U, Shukla R (2020) Modeling of Black Layer and Tool Wear in EDM of AISI 4340 using Cu-W electrode. Procedia CIRP 95:389–392
Rao PS, Dora SP, Purnima NS (2021) Influence of WC/Co powder metallurgy electrodes made by micron and nano particles on EDM performance. Met Powder Rep 76:52–58. https://doi.org/10.1016/S0026-0657(21)00304-0
Sivakumar K, Kumar PM, Amarkarthik A, Jegadheeswaran S, Shanmugaprakash R (2021) Empirical modeling of material removal rate and surface roughness of OHNS steel using Cu-TiB2 Tool in EDM. Mater Today Proc 45:2725–2729. https://doi.org/10.1016/j.matpr.2020.11.597
Uddin MP, Majumder A, Deb Barma J, Kumar P (2022) Study of the performance of Cu-Gr composite tool during EDM of AISI 1020 mild steel. Mater Today Proc 62:3886–3890. https://doi.org/10.1016/j.matpr.2022.04.542
Equbal A, Israr Equbal M, Badruddin IA, Algahtani A (2022) A critical insight into the use of FDM for production of EDM electrode. Alexandria Eng J 61:4057–4066. https://doi.org/10.1016/j.aej.2021.09.033
Shaikh MSNM, Ahuja BB (2020) Effects of primary and secondary metallization techniques on the performance of electric discharge machining (EDM) electrode produced by additive manufacturing and composite coating. Mater Today Proc 41:875–885. https://doi.org/10.1016/j.matpr.2020.09.441
Reddy RDP, Sahu AK, Mahapatra SS (2022) Investigation on performance of a copper coated hollow rapid electrode during electrical discharge machining. Sadhana - Acad Proc Eng Sci 47. https://doi.org/10.1007/s12046-022-01947-7.
Kohli A, Wadhwa A, Virmani T, Jain U (2012) Optimization of Material Removal Rate in Electrical Discharge Machining Using Fuzzy Logic. World Acad Sci Eng Technol 72:1674–1679
Özerkan HB (2018) Simultaneous machining and surface alloying of AISI 1040 steel by electrical discharge machining with boron oxide powders. J Mech Sci Technol 32:4357–4364. https://doi.org/10.1007/s12206-018-0834-0
Bhaumik M, Maity K (2017) Effect of machining parameter on the surface roughness of AISI 304 in silicon carbide powder mixed EDM. Decis Sci Lett 6:261–268. https://doi.org/10.5267/j.dsl.2016.12.004
Bhaumik M, Maity K (2018) Experimental investigation and finite element simulation of AISI 304 during electro discharge machining. Int J Model Simulation, Sci Comput 9:1–15. https://doi.org/10.1142/S1793962318500228
Ubaid AM, Dweiri FT, Aghdeab SH, Al-Juboori LA (2018) Optimization of electro discharge machining process parameters with fuzzy logic for stainless steel 304 (ASTM A240). J Manuf Sci Eng Trans ASME 140:1–13. https://doi.org/10.1115/1.4038139
Pradhan MK (2013) Estimating the effect of process parameters on MRR, TWR and radial overcut of EDMed AISI D2 tool steel by RSM and GRA coupled with PCA. Int J Adv Manuf Technol 68:591–605. https://doi.org/10.1007/s00170-013-4780-9
Kumar S, Grover S, Walia RS (2018) Effect of hybrid wire EDM conditions on generation of residual stresses in machining of HCHCr D2 tool steel under ultrasonic vibration. Int J Interact Des Manuf 12:1119–1137. https://doi.org/10.1007/s12008-018-0474-8
Jagadish KS, Soni DL (2021) Performance Analysis and Optimization of Different Electrode Materials and Dielectric Fluids on Machining of High Carbon High Chromium Steel in Electrical Discharge Machining. Proc Natl Acad Sci India Sect A - Phys Sci. https://doi.org/10.1007/s40010-020-00727-4
Majhi SK, Mishra TK, Pradhan MK, Soni H (2014) Effect of machining parameters of AISI D2 Tool steel on Electro discharge machining. Int J Curr Eng Technol 4:19–23
Tayyab M, Ahmad S, Akhtar MJ, Sathikh PM, Singari RM (2022) Prediction of mechanical properties for acrylonitrile-butadiene-styrene parts manufactured by fused deposition modelling using artificial neural network and genetic algorithm. Int J Comput Integr Manuf 00:1–18. https://doi.org/10.1080/0951192X.2022.2104462
Saffaran A, Azadi Moghaddam M, Kolahan F (2020) Optimization of backpropagation neural network-based models in EDM process using particle swarm optimization and simulated annealing algorithms. J Brazilian Soc Mech Sci Eng 42. https://doi.org/10.1007/s40430-019-2149-1.
Pandey AK, Gautam GD (2018) Grey relational analysis-based genetic algorithm optimization of electrical discharge drilling of Nimonic-90 superalloy. J Brazilian Soc Mech Sci Eng 40. https://doi.org/10.1007/s40430-018-1045-4.
Roy A, Sachin B, Raghavendra T, Rao CM, Naik GM, Soni H et al (2022) Optimizing machining responses of homologous TiNiCu shape memory alloys using hybrid ANN-GA approach. Mater Today Proc 62:4402–4410. https://doi.org/10.1016/j.matpr.2022.04.890
Hasancebi O, Kazemzadeh Azad S (2012) An Efficient Metaheuristic Algorithm For Engineering Optimization : SOPT. Int J Optim Civil Eng 2:479–487
Sahu AK, Thomas J, Mahapatra SS (2021) An intelligent approach to optimize the electrical discharge machining of titanium alloy by simple optimization algorithm. Proc Inst Mech Eng Part E J Process Mech Eng 235:371–383. https://doi.org/10.1177/0954408920964685
Thomas J, Sahu AK, Mahapatra SS (2018) Multi-objective optimization of water jet machining process using simple optimization algorithm(SOPT). Mater Today Proc 5:19034–19042. https://doi.org/10.1016/j.matpr.2018.06.255
Majhi SK, Pradhan MK, Soni H (2013) Application of Integrated Rsm-Grey-Entropy Analysis for Optimization of Edm Parameters. Adv Res Mech Eng 4–9.
Soni H, R RM, (2015) Effect of Machining Parameters on Wire Electro Discharge Machining of Shape Memory Alloys Analyzed using Grey Entropy Method. J Mater Sci Mech Eng Issue 2:2393–9095
Soni H, Narendranath S, Ramesh MR (2017) ANN and RSM modeling methods for predicting material removal rate and surface roughness during WEDM of Ti50Ni40Co10 shape memory alloy. Adv Model Anal A 54:435–443
Reddy D, Soni H, Narendranath S (2018) Experimental investigation and optimization of WEDM process parameters for Ti50Ni48Co2 shape memory alloy. Mater Today Proc 5:19063–19072. https://doi.org/10.1016/j.matpr.2018.06.259
Mausam K, Sharma K, Bharadwaj G, Singh RP (2019) Multi-objective optimization design of die-sinking electric discharge machine (EDM) machining parameter for CNT-reinforced carbon fibre nanocomposite using grey relational analysis. J Brazilian Soc Mech Sci Eng 41. https://doi.org/10.1007/s40430-019-1850-4.
Hargovind S, Narendranath S, Ramesh MR (2019) Advanced machining of TiNiCo shape memory alloys for biomedical applications. Emerg Mater Res 8:14–21. https://doi.org/10.1680/jemmr.17.00066
Mashinini PM, Soni H, Gupta K (2020) Investigation on dry machining of stainless steel 316 using textured tungsten carbide tools. Mater Res Express 7. https://doi.org/10.1088/2053-1591/ab5630.
Porwal RK, Yadava V, Ramkumar J (2014) Modelling and multi-response optimization of hole sinking electrical discharge micromachining of titanium alloy thin sheet. J Mech Sci Technol 28:653–661. https://doi.org/10.1007/s12206-013-1129-0
Manikandan N, Kumanan S, Sathiyanarayanan C (2015) Multi response optimization of electrochemical drilling of titanium Ti6Al4V alloy using Taguchi based grey relational analysis. Indian J Eng Mater Sci 22:153–160
Tripathy S, Tripathy DK (2016) Multi-attribute optimization of machining process parameters in powder mixed electro-discharge machining using TOPSIS and grey relational analysis. Eng Sci Technol an Int J 19:62–70. https://doi.org/10.1016/j.jestch.2015.07.010
Eberhart R, Kennedy J (1997) A new optimizer using particle swarm theory. Proc IEEE Symp Micro Mach Hum Sci Nagoys, Japan 39–43.
Bergh FV, Engelbrecht A (2006) A study of particle swarm optimization particle trajectories. Inf Sci (Ny) 176:937–971. https://doi.org/10.1016/j.ins.2005.02.003
Helwig S, Wanka R (2007) Particle swarm optimization in high-dimensional bounded search spaces. Proc 2007 IEEE Swarm Intell Symp SIS 2007 198–205. https://doi.org/10.1109/SIS.2007.368046.
Rao RV, Savsani VJ, Vakharia DP (2012) Teaching–Learning-Based Optimization: An optimization method for continuous non-linear large scale problems. Inf Sci (Ny) 183:1–15. https://doi.org/10.1016/j.ins.2011.08.006