Optimization of catalytic active sites in non-collinear antiferromagnetic Mn3Pt bulk single-crystal
Tài liệu tham khảo
Zelezny, 2017, Spin-polarized current in noncollinear antiferromagnets, Phys. Rev. Lett., 119, 187204, 10.1103/PhysRevLett.119.187204
Nakatsuji, 2015, Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature, Nature, 527, 212, 10.1038/nature15723
Ikhlas, 2017, Large anomalous Nernst effect at room temperature in a chiral antiferromagnet, Nat. Phys., 13, 1085, 10.1038/nphys4181
Yang, 2017, Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn, New J. Phys., 19, 10.1088/1367-2630/aa5487
Zhang, 2017, Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X=Ge, Sn, Ga, Ir, Rh, and Pt), Phys. Rev. B, 95
Ikeda, 2003, Spin fluctuations in an octahedral antiferromagnet Mn3Pt alloy, J Phys. Soc. Japan, 72, 2614, 10.1143/JPSJ.72.2614
Liu, 2018, Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature, Nat. Electron., 1, 172, 10.1038/s41928-018-0040-1
Bhattacharjee, 2016, An improved d-band model of the catalytic activity of magnetic transition metal surfaces, Sci. Rep., 6, 35916, 10.1038/srep35916
Vaney, 2019, Magnetism-mediated thermoelectric performance of the Cr-doped bismuth telluride tetradymite, Mater. Today Phys., 9, 100090, 10.1016/j.mtphys.2019.03.004
Li, 2019, Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation, Sci. Adv., 5, 10.1126/sciadv.aaw9867
Zhang, 2016, Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity, Angew. Chem., 55, 6702, 10.1002/anie.201602237
Li, 2016, All the catalytic active sites of MoS2 for hydrogen evolution, J. Am. Chem. Soc., 138, 16632, 10.1021/jacs.6b05940
Zhu, 2019, Boundary activated hydrogen evolution reaction on monolayer MoS2, Nat. Commun., 10, 1348, 10.1038/s41467-019-09269-9
Zhou, 2018, Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity, Adv. Mater., 30, 10.1002/adma.201706076
Zhang, 2014, Ferromagnetism in ultrathin MoS2 nanosheets: from amorphous to crystalline, Nanoscale Res. Lett., 9, 586, 10.1186/1556-276X-9-586
Vojvodic, 2009, Magnetic edge states in MoS2 characterized using density-functional theory, Phys. Rev. B, 80, 125416, 10.1103/PhysRevB.80.125416
Zhang, 2007, Magnetic molybdenum disulfide nanosheet films, Nano Lett., 7, 2370, 10.1021/nl071016r
Mishra, 2018, Highly efficient hydrogen evolution by self-standing nickel phosphide-based hybrid nanosheet arrays electrocatalyst, Mater. Today Phys., 4, 1, 10.1016/j.mtphys.2018.01.001
Ma, 2019, A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts, Npj Comput. Mater., 5, 1, 10.1038/s41524-019-0210-3
Zhou, 2016, Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam, Nat. Commun., 7, 12765, 10.1038/ncomms12765
Yu, 2018, Ternary Ni2(1-x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density, Nano Energy, 53, 492, 10.1016/j.nanoen.2018.08.025
Yu, 2017, Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting, Energy Environ. Sci., 10, 1820, 10.1039/C7EE01571B
Li, 2019, Dirac nodal arc semimetal PtSn4 : an ideal platform for understanding surface properties and catalysis for hydrogen evolution, Angew. Chem., 58, 2, 10.1002/anie.201906109
Leostean, 2018, New properties of Fe3O4@SnO2 core shell nanoparticles following interface charge/spin transfer, Appl. Surf. Sci., 427, 192, 10.1016/j.apsusc.2017.07.267
Naaman, 2015, Spintronics and chirality: spin selectivity in electron transport through chiral molecules, Annu. Rev. Phys. Chem., 66, 263, 10.1146/annurev-physchem-040214-121554
Carmeli, 2014, Spin selectivity in electron transfer in photosystem I, Angew. Chem. Int. Ed., 53, 8953, 10.1002/anie.201404382
Banerjee-Ghosh, 2018, Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates, Science, 360, 1331, 10.1126/science.aar4265
Ghosh, 2019, Controlling chemical selectivity in electrocatalysis with chiral CuO-coated electrodes, J. Phys. Chem. C, 123, 3024, 10.1021/acs.jpcc.8b12027
Gao, 2016, The effect of external magnetic fields on the catalytic activity of Pd nanoparticles in Suzuki cross-coupling reactions, Nanoscale, 8, 8355, 10.1039/C6NR00575F
Zhang, 2018, Enhanced electrochemical water splitting with chiral molecule-coated Fe3O4 nanoparticles, ACS Energy Lett, 3, 2308, 10.1021/acsenergylett.8b01454
Lu, 2018, Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires, Nat. Chem., 456, 10.1038/s41557-018-0012-0
McKone, 2013, Ni–Mo nanopowders for efficient electrochemical hydrogen evolution, ACS Catal., 3, 166, 10.1021/cs300691m
Zhang, 2017, Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction, Adv. Mater., 29, 1605502, 10.1002/adma.201605502
Ling, 2017, Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering, Nat. Commun., 8, 1509, 10.1038/s41467-017-01872-y
Kibsgaard, 2014, Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction, Angew. Chem., 53, 14433, 10.1002/anie.201408222
Baetzold, 1982, Surface core-level shifts for Pt single-crystal surfaces, Phys. Rev. B, 26, 4022, 10.1103/PhysRevB.26.4022
Zou, 2015, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev., 44, 5148, 10.1039/C4CS00448E
Li, 2019, Processable surface modification of nickel-heteroatom (N, S) bridge sites for promoted alkaline hydrogen evolution, Angew. Chem., 58, 461, 10.1002/anie.201808629
Cao, 2017, Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction, Nat. Commun., 8, 15131, 10.1038/ncomms15131
Nørskov, 2005, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc., 152, J23, 10.1149/1.1856988
Zhang, 2018, Surface spintronics enhanced photo-catalytic hydrogen evolution: mechanisms, strategies, challenges and future, Appl. Surf. Sci., 434, 643, 10.1016/j.apsusc.2017.10.228