Optimization of catalytic active sites in non-collinear antiferromagnetic Mn3Pt bulk single-crystal

Materials Today Physics - Tập 10 - Trang 100137 - 2019
G. Li1, Q. Yang2, K. Manna1, C. Fu2, H. Deniz3, J. Jena3, F. Li3, S. Parkin3, G. Auffermann1, Y. Sun2, C. Felser2
1Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
2Max-Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
3Max Planck Institute for Microstructure Physics, 06120, Halle, Germany

Tài liệu tham khảo

Zelezny, 2017, Spin-polarized current in noncollinear antiferromagnets, Phys. Rev. Lett., 119, 187204, 10.1103/PhysRevLett.119.187204 Nakatsuji, 2015, Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature, Nature, 527, 212, 10.1038/nature15723 Ikhlas, 2017, Large anomalous Nernst effect at room temperature in a chiral antiferromagnet, Nat. Phys., 13, 1085, 10.1038/nphys4181 Yang, 2017, Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn, New J. Phys., 19, 10.1088/1367-2630/aa5487 Zhang, 2017, Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X=Ge, Sn, Ga, Ir, Rh, and Pt), Phys. Rev. B, 95 Ikeda, 2003, Spin fluctuations in an octahedral antiferromagnet Mn3Pt alloy, J Phys. Soc. Japan, 72, 2614, 10.1143/JPSJ.72.2614 Liu, 2018, Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature, Nat. Electron., 1, 172, 10.1038/s41928-018-0040-1 Bhattacharjee, 2016, An improved d-band model of the catalytic activity of magnetic transition metal surfaces, Sci. Rep., 6, 35916, 10.1038/srep35916 Vaney, 2019, Magnetism-mediated thermoelectric performance of the Cr-doped bismuth telluride tetradymite, Mater. Today Phys., 9, 100090, 10.1016/j.mtphys.2019.03.004 Li, 2019, Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation, Sci. Adv., 5, 10.1126/sciadv.aaw9867 Zhang, 2016, Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity, Angew. Chem., 55, 6702, 10.1002/anie.201602237 Li, 2016, All the catalytic active sites of MoS2 for hydrogen evolution, J. Am. Chem. Soc., 138, 16632, 10.1021/jacs.6b05940 Zhu, 2019, Boundary activated hydrogen evolution reaction on monolayer MoS2, Nat. Commun., 10, 1348, 10.1038/s41467-019-09269-9 Zhou, 2018, Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity, Adv. Mater., 30, 10.1002/adma.201706076 Zhang, 2014, Ferromagnetism in ultrathin MoS2 nanosheets: from amorphous to crystalline, Nanoscale Res. Lett., 9, 586, 10.1186/1556-276X-9-586 Vojvodic, 2009, Magnetic edge states in MoS2 characterized using density-functional theory, Phys. Rev. B, 80, 125416, 10.1103/PhysRevB.80.125416 Zhang, 2007, Magnetic molybdenum disulfide nanosheet films, Nano Lett., 7, 2370, 10.1021/nl071016r Mishra, 2018, Highly efficient hydrogen evolution by self-standing nickel phosphide-based hybrid nanosheet arrays electrocatalyst, Mater. Today Phys., 4, 1, 10.1016/j.mtphys.2018.01.001 Ma, 2019, A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts, Npj Comput. Mater., 5, 1, 10.1038/s41524-019-0210-3 Zhou, 2016, Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam, Nat. Commun., 7, 12765, 10.1038/ncomms12765 Yu, 2018, Ternary Ni2(1-x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density, Nano Energy, 53, 492, 10.1016/j.nanoen.2018.08.025 Yu, 2017, Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting, Energy Environ. Sci., 10, 1820, 10.1039/C7EE01571B Li, 2019, Dirac nodal arc semimetal PtSn4 : an ideal platform for understanding surface properties and catalysis for hydrogen evolution, Angew. Chem., 58, 2, 10.1002/anie.201906109 Leostean, 2018, New properties of Fe3O4@SnO2 core shell nanoparticles following interface charge/spin transfer, Appl. Surf. Sci., 427, 192, 10.1016/j.apsusc.2017.07.267 Naaman, 2015, Spintronics and chirality: spin selectivity in electron transport through chiral molecules, Annu. Rev. Phys. Chem., 66, 263, 10.1146/annurev-physchem-040214-121554 Carmeli, 2014, Spin selectivity in electron transfer in photosystem I, Angew. Chem. Int. Ed., 53, 8953, 10.1002/anie.201404382 Banerjee-Ghosh, 2018, Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates, Science, 360, 1331, 10.1126/science.aar4265 Ghosh, 2019, Controlling chemical selectivity in electrocatalysis with chiral CuO-coated electrodes, J. Phys. Chem. C, 123, 3024, 10.1021/acs.jpcc.8b12027 Gao, 2016, The effect of external magnetic fields on the catalytic activity of Pd nanoparticles in Suzuki cross-coupling reactions, Nanoscale, 8, 8355, 10.1039/C6NR00575F Zhang, 2018, Enhanced electrochemical water splitting with chiral molecule-coated Fe3O4 nanoparticles, ACS Energy Lett, 3, 2308, 10.1021/acsenergylett.8b01454 Lu, 2018, Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires, Nat. Chem., 456, 10.1038/s41557-018-0012-0 McKone, 2013, Ni–Mo nanopowders for efficient electrochemical hydrogen evolution, ACS Catal., 3, 166, 10.1021/cs300691m Zhang, 2017, Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction, Adv. Mater., 29, 1605502, 10.1002/adma.201605502 Ling, 2017, Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering, Nat. Commun., 8, 1509, 10.1038/s41467-017-01872-y Kibsgaard, 2014, Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction, Angew. Chem., 53, 14433, 10.1002/anie.201408222 Baetzold, 1982, Surface core-level shifts for Pt single-crystal surfaces, Phys. Rev. B, 26, 4022, 10.1103/PhysRevB.26.4022 Zou, 2015, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev., 44, 5148, 10.1039/C4CS00448E Li, 2019, Processable surface modification of nickel-heteroatom (N, S) bridge sites for promoted alkaline hydrogen evolution, Angew. Chem., 58, 461, 10.1002/anie.201808629 Cao, 2017, Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction, Nat. Commun., 8, 15131, 10.1038/ncomms15131 Nørskov, 2005, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc., 152, J23, 10.1149/1.1856988 Zhang, 2018, Surface spintronics enhanced photo-catalytic hydrogen evolution: mechanisms, strategies, challenges and future, Appl. Surf. Sci., 434, 643, 10.1016/j.apsusc.2017.10.228