Optimization of calcination temperature in preparation of a high capacity Li-rich solid-solution Li[Li0.2Ni0.18Co0.03Mn0.58]O2 material and its cathode performance in lithium ion battery

Electrochimica Acta - Tập 269 - Trang 321-330 - 2018
Fumihiro Nomura1, Yubin Liu1, Toyokazu Tanabe1,2, Naoki Tamura1, Takashi Tsuda1, Takeshi Hagiwara3, Takao Gunji1, Takeo Ohsaka3, Futoshi Matsumoto1,2
1Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
2LIB Open-Lab., Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
3Research Institute for Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan

Tài liệu tham khảo

Thackeray, 2007, Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries, J. Mater. Chem., 17, 3112, 10.1039/b702425h Armstrong, 2006, Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2, J. Am. Chem. Soc., 128, 8694, 10.1021/ja062027+ Numata, 1997, Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode materials of secondary lithium batteries, Chem. Lett., 725, 10.1246/cl.1997.725 Lu, 2002, Understanding the anomalous capacity of Li/ Li[ NixLi (1/3−2x/3) Mn(2/3 −x/3)]O2 cells using in situ x-ray diffraction and electrochemical studies, J. Electrochem. Soc., 149, A815, 10.1149/1.1480014 Lu, 2002, Synthesis, structure, and electrochemical behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2, J. Electrochem. Soc., 149, A778, 10.1149/1.1471541 Jarvis, 2011, Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution, Chem. Mater., 23, 3614, 10.1021/cm200831c Hong, 2012, Critical role of oxygen evolved from layered Li−Excess metal oxides in lithium rechargeable batteries, Chem. Mater., 24, 2692, 10.1021/cm3005634 Oh, 2014, Superior long-term energy retention and volumetric energy density for Li-Rich cathode materials, Nano Lett., 14, 5965, 10.1021/nl502980k Yu, 2013, High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries, J. Phys. Chem. Lett., 4, 1268, 10.1021/jz400032v Zhang, 2015, Nanostructured Mn-based oxides for electrochemical energy storage and conversion, Chem. Soc. Rev., 44, 699, 10.1039/C4CS00218K Ito, 2010, Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2, J. Power Sources, 195, 567, 10.1016/j.jpowsour.2009.07.052 Tsuda, 2017, ECS Transactions, 75, 173, 10.1149/07520.0173ecst Ito, 2008, A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment, J. Power Sources, 183, 344, 10.1016/j.jpowsour.2008.04.086 Ito, 2008, Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2, J. Power Sources, 195, 567, 10.1016/j.jpowsour.2009.07.052 Bréger, 2005, High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3–Li[Ni1/2Mn1/2]O2 solid solution, J. Solid State Chem., 178, 2575, 10.1016/j.jssc.2005.05.027 Meng, 2005, Cation ordering in layered O3 Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 < x < 1/2) compounds, Chem. Mater., 17, 2386, 10.1021/cm047779m Howie, 1979, Image contrast and localized signal selection techniques, J. Microsc., 117, 11, 10.1111/j.1365-2818.1979.tb00228.x Zhu, 2014, Synthesis of layered cathode material 0.5Li2MnO3–0.5LiMn1/3Ni1/3Co1/3O2 by an improved co-precipitation method for lithium-ion battery, J. Power Sources, 256, 178, 10.1016/j.jpowsour.2014.01.068 Whitfield, 2005, Effects of synthesis on electrochemical, structural and physical properties of solution phases of Li2MnO3–LiNi1−xCoxO2, J. Power Sources, 146, 617, 10.1016/j.jpowsour.2005.03.077 Gu, 2013, Formation of the spinel phase in the layered composite cathode used in Li-Ion batteries, ACS Nano, 760, 10.1021/nn305065u Thackeray, 2006, Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M = Mn, Ni, Co) for lithium batteries, Electrochem. Comm., 8, 1531, 10.1016/j.elecom.2006.06.030 Li, 2011, Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability, J. Power Sources, 196, 4821, 10.1016/j.jpowsour.2011.01.006 Peralta, 2015, Role of the composition of lithium-rich layered oxide materials on the voltage decay, J. Power Sources, 280, 687, 10.1016/j.jpowsour.2015.01.146 Liu, 2014, Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects, Energy Environ. Sci., 7, 705, 10.1039/C3EE41664J Lim, 2009, Electrochemical characterization of Li2MnO3–Li[Ni1/3Co1/3Mn1/3]O2–LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries, J. Power Sources, 189, 571, 10.1016/j.jpowsour.2008.10.035 Cao, 2005, Synthesis and electrochemical characteristics of layered LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries, Solid State Ionics, 176, 1207, 10.1016/j.ssi.2005.02.023 Chebiam, 2001, Structural instability of delithiated Li1−xNi1−yCoyO2 cathodes, J. Electrochem. Soc., 148, A49, 10.1149/1.1339029 Kang, 2006, Factors that affect Li mobility in layered lithium transition metal oxides, Phys. Rev. B, 74, 1, 10.1103/PhysRevB.74.094105 Julien, 2016, Optimization of layered cathode materials for lithium-ion battery, Materials, 9, 595, 10.3390/ma9070595 Deng, 2004, Greatly improved elevated-temperature cycling behavior of Li1+xMgyMn2-x-yO4+ö spinels with controlled oxygen stoichiometry, Electrochim. Acta, 49, 1823, 10.1016/j.electacta.2003.11.032 Boulineau, 2012, Thermal stability of Li2MnO3: form localized defects to the spinel phase, Dalton Trans., 41, 1574, 10.1039/C1DT11598G Fell, 2013, Correlation between oxygen vacancy, microstrain, and cation distribution in lithium-excess layered oxides during the first electrochemical cycle, Chem. Mater., 25, 1621, 10.1021/cm4000119 Zhang, 2015, Effect of pressure on the structural properties of Li[Li0.1Ni0.35Mn0.55]O2, AIP Adv., 5 Wang, 2012, Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2−0.4LiNixMnyCo1-x-yO2 cathode materials for lithium-ion batteries, J. Power Sources, 218, 128, 10.1016/j.jpowsour.2012.06.067 Zhang, 2010, Minimization of the cation mixing in Li1+x(NMC)1−xO2 as cathode material, J. Power Sources, 195, 1292, 10.1016/j.jpowsour.2009.09.029 Nayak, 2016, Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-Rich cathodes for Li-Ion batteries, Adv. Energy Mater., 6, 1502398, 10.1002/aenm.201502398 Erickson, 2017, Review—recent advances and remaining challenges for lithium ion battery cathodes II. Lithium-rich, xLi2MnO3·(1-x)LiNiaCobMncO2, J. Electrochem. Soc., 164, A6341, 10.1149/2.0461701jes Zheng, 2014, Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution, Nano Lett., 14, 2628, 10.1021/nl500486y Yuan, 2017, Influence of calcination atmosphere on structure and electrochemical behavior of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries, Electrochim. Acta, 230, 116, 10.1016/j.electacta.2017.01.102