Optimization of an Artificial Neural Network Using Three Novel Meta-heuristic Algorithms for Predicting the Shear Strength of Soil

Ahsan Rabbani1, Pijush Samui1, Sunita Kumari1, Bhupendra Kumar Saraswat2, Mohit Tiwari3, Anubhav Rai4
1Department of Civil Engineering, National Institute of Technology Patna (Bihar), Patna, India
2Department of Mechanical Engineering, GLA University Mathura (UP), Mathura, India
3Department of Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, Delhi, India
4Department of Civil Engineering, Gyan Ganga Institute of Technology and Sciences Jabalpur (MP), Jabalpur, India

Tóm tắt

Shear strength of soil (SSS) is crucial in civil engineering for foundations, highways, earth fill dams, slope stability, airfields, and coastal structure design. Measuring SSS at a field scale is difficult, time-consuming, and costly. Geotechnical engineers need to predict SSS without complex laboratory testing, addressing practical needs. The prediction of this parameter using hybrid models may assist in saving time and money on construction initiatives. For this purpose, the weight and bias of the artificial neural network (ANN) were optimized by grey wolf optimization (GWO), augmented grey wolf optimization (AGWO), and Harris hawks optimization (HHO), forming hybrid models (ANN-GWO, ANN-AGWO, and ANN-HHO) to predict SSS. The most effective models were chosen after all models had been developed and tested. The validation of the developed hybrid models was implemented with the help of various performance parameters. After the validation process, it was found that the ANN-AGWO hybrid model gives better outcomes in both training and testing phases in predicting SSS. Based on the rank analysis of each model, the rank value in total attained by ANN-AGWO is much higher than that of other developed hybrid models. The hybrid model's performance parameter and rank analysis revealed AGWO as the most reliable ANN, while ANN-GWO emerged as the second-most accurate model.

Tài liệu tham khảo

Alkabbani, H., Ahmadian, A., Zhu, Q., Elkamel, A.: Machine learning and metaheuristic methods for renewable power forecasting: a recent review. Front. Chem. Sci. Eng. 3, 665415 (2021). https://doi.org/10.3389/fceng.2021.665415 Azam, A., Bardhan, A., Kaloop, M.R., Samui, R., Alanazi, F., Alzara, M., Yosri: A.M.: Modeling resilient modulus of subgrade soils using LSSVM optimized with swarm intelligence algorithms. Sci. Rep. 12, 14454 (2022). https://doi.org/10.1038/s41598-022-17429-z Bardhan, A., Asteris, P.G.: Application of hybrid ANN paradigms built with nature inspired meta-heuristics for modelling soil compaction parameters. Transp. Geotech. 41, 100995 (2023). https://doi.org/10.1016/j.trgeo.2023.100995 Bardhan, A., Biswas, R., Kardani, N., Iqbal, M., Samui, P., Singh, M.P., Asteris, P.G.: A novel integrated approach of augmented grey wolf optimizer and ANN for estimating axial load carrying-capacity of concrete-filled steel tube columns. Construct. Build Mater. 337, 127454 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127454 Bardhan, A., Alzo'ubi, A.K., Palanivelu, S., Hamidian, P., GuhaRay, A., Kumar, G., Tsoukalas, M.Z., Asteris, P.G.: A hybrid approach of ANN and improved PSO for estimating soaked CBR of subgrade soils of heavy-haul railway corridor. Int. J. Pavement Eng. 24(1), 2176494 (2023). https://doi.org/10.1080/10298436.2023.2176494 Barzegar, R., Adamowski, J., Moghaddam, A.A.: Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran. Stoch. Environ. Res. Risk. Assess. 30(7), 1797–1819 (2016). https://doi.org/10.1007/s00477-016-1213-y Bieliková, T., Bányiová, T., Piterková, A.: Prediction techniques of agriculture enterprises failure. Procedia. Econ. 12, 48–56 (2014). https://doi.org/10.1016/S2212-5671(14)00319-0 Bui, D.T., Nhu, V.H., Hoang, N.D.: Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and multi-layer perceptron neural network. Adv. Eng. Inform. 38, 593–604 (2018). https://doi.org/10.1016/j.aei.2018.09.005 Cao, M.T., Hoang, N.D., Nhu, V.H., Bui, D.T.: An advanced meta-learner based on artificial electric field algorithm optimized stacking ensemble techniques for enhancing prediction accuracy of soil shear strength. Eng. Comput. 38, 2185–2207 (2020). https://doi.org/10.1007/s00366-020-01116-6 Chen, H., Asteris, P.G., Armaghani, D.J., Gordan, B., Pham, B.T.: Assessing dynamic conditions of the retaining wall: developing two hybrid intelligent models. Appl. Sci. 9(6), 1042 (2019). https://doi.org/10.3390/app9061042 Das, B.M., Sobhan, K.: Principles of Geotechnical Engineering. Cengage Learning, Boston, MA, USA (2013) Ding, W., Nguyen, M.D., Mohammed, A.S., Armaghani, D.J., Hasanipanah, M., Bui, L.V., Pham, B.T.: A new development of ANFIS-Based Henry gas solubility optimization technique for prediction of soil shear strength. Transp. Geotech. 29, 100579 (2021). https://doi.org/10.1016/j.trgeo.2021.100579 Foroutan, K., Varedi- Koulaei, S.M., Duc, N.D., Ahmadi, H.: Non-linear static and dynamic buckling analysis of laminated composite cylindrical shell embedded in non-linear elastic foundation using the swarm-based metaheuristic algorithms. Eur. J. Mech. A/Solids. 91, 104420 (2022). https://doi.org/10.1016/j.euromechsol.2021.104420 Garven, E., Vanapalli, S.: Evaluation of empirical procedures for predicting the shear strength of unsaturated soils. In: Fourth international conference on unsaturated soils, pp. 2570–2592. Geotech. Spec. Publ (2006). https://doi.org/10.1061/40802(189)219 Hammed, M.M., Al Omar, M.K., Khaleel, F., Al-Ansari, N.: An extra tree regression model for discharge coefficient prediction: novel, practical applications in the hydraulic sector and future research directions, math. Probl. Eng. 2021, 7001710 (2021). https://doi.org/10.1155/2021/7001710 He, Z., Nguyen, H., Vu, T.H., Zhou, J., Asteris, P.G., Mammou, A.: Novel integrated approaches for predicting the compressibility of clay using cascade forward neural networks optimized by swarm- and evolution-based algorithms. Acta. Geotech. 17, 1257–1272 (2021). https://doi.org/10.1007/s11440-021-01358-8 Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Future Gener. Comput. Syst. 97, 849–872 (2019). https://doi.org/10.1016/j.future.2019.02.028 Hettiarachchi, H., Brown, T.: Use of SPT blow counts to estimate shear strength properties of soils: Energy balance approach. J. Geotech. Geoenvironmental Eng. 135(6), 830–834 (2009). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000016 Huang, L., Asteris, P.G., Koopialipoor, M., Armaghani, D.J., Tahir, M.M.: Invasive weed optimization technique-based ANN to the prediction of rock tensile strength. Appl. Sci. 9(24), 5372 (2019). https://doi.org/10.3390/app9245372 Kardani, N., Aminpour, M., Raja, M.N.A., Kumar, G., Bardhan, A., Nazem, M.: Prediction of the resilient modulus of compacted subgrade soils using ensemble machine learning methods. Transp. Geotech. 36, 100827 (2022). https://doi.org/10.1016/j.trgeo.2022.100827 Khan, K., Iqbal, M., Jalal, F.E., Amin, M.N., Alam, M.W., Bardhan, A.: Hybrid ANN models for durability of GFRP rebars in alkaline concrete environment using three swarm-based optimization algorithms. Construct. Build Mater. 352, 128862 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128862 Kim, B.S., Shibuya, S., Park, S.W., Kato, S.: Application of suction stress for estimating unsaturated shear strength of soils using direct shear testing under low confining pressure. Can. Geotech. 47, 955–970 (2010). https://doi.org/10.1139/T10-007 Kiran, S., Lal, B., Tripathy, S.: Shear strength prediction of soil based on probabilistic neural network. Indian J. Sci. Technol. 9(41), 1–6 (2016). https://doi.org/10.17485/ijst/2016/v9i41/99188 Koopialipoor, M., Fallah, A., Armaghani, D.J., Azizi, A., Mohamad, E.T.: Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Eng. Comput. 35, 243–256 (2019). https://doi.org/10.1007/s00366-018-0596-4 Leong, E.C.: Soil-water characteristic curves-determination, estimation and application. Jpn. Geotech. Soc. Spec. Publ. 7, 21–30 (2019). https://doi.org/10.3208/jgssp.v07.003 Lin, S., Zheng, H., Han, C., Han, B., Li, W.: Evaluation and prediction of slope stability using machine learning approaches. Front. Struct. Civ. Eng. 15(4), 821–833 (2021). https://doi.org/10.1007/s11709-021-0742-8 Ly, H.-B., Pham, B.T.: Prediction of shear strength of soil using direct shear test and support vector machine model. Open Constr. Build. Technol. J. 14(2), 268–277 (2020). https://doi.org/10.2174/1874836802014010268 Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey Wolf Optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007 Moayedi, H., Abdullahi, M.A.M., Nguyen, H., Rashid, A.S.A.: Comparison of dragonfly algorithm and Harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils. Eng. Comput. 37, 437–447 (2019). https://doi.org/10.1007/s00366-019-00834-w Moayedi, H., Osouli, A., Nguyen, H., Rashid, A.S.A.: A novel Harris hawks’ optimization and k-fold cross-validation predicting slope stability. Eng. Comput. 37, 369–379 (2021). https://doi.org/10.1007/s00366-019-00828-8 Momeni, E., He, B., Abdi, Y., Armaghani, D.J.: Novel hybrid XGBoost model to forecast soil shear strength based on some soil index tests. Comput. Model. Eng. Sci. 136(3), (2023). https://doi.org/10.32604/cmes.2023.026531 Müller, R., Larsson, S., Spross, J.: Extended multivariate approach for uncertainty reduction in the assessment of undrained shear strength in clays. Can. Geotech. J. 51, 231–245 (2013). https://doi.org/10.1139/cgj-2012-0176 Pham, B.T., Prakash, I., Dou, J., Singh, S.K., Trinh, P.T., Tran, H.T., Le, T.M., Van Phong, T., Khoi, D.K., Shirzadi, A.: A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers, Geocarto Int. 35(12), 1267-1292 (2019). https://doi.org/10.1080/10106049.2018.1559885 Pham, B.T., Avand, M., Janizadeh, S., Phong, T.V., Al-Ansari, N., Ho, L.S., Das, S., Le, H.V., Amini, A., Bozchaloei, S.K.: GIS based hybrid computational approaches for flash flood susceptibility assessment. Water. 12(3), 683 (2020). https://doi.org/10.3390/w12030683 Qais, M.H., Hasanien, H.M., Alghuwainem, S.: Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems. Appl. Soft Comput. 69, 504–515 (2018). https://doi.org/10.1016/j.asoc.2018.05.006 Rabbani, A., Samui, P., Kumari, S.: A novel hybrid model of augmented grey wolf optimizer and artificial neural network for predicting shear strength of soil. Model. Earth Syst. Environ. 9, 2327–2347 (2022). https://doi.org/10.1007/s40808-022-01610-4 Rabbani, A., Samui, P., Kumari, S.: Implementing ensemble learning models for the prediction of shear strength of soil. Asian J. Civ. Eng. (2023a). https://doi.org/10.1007/s42107-023-00629-x Rabbani, A., Samui, P., Kumari, S.: Optimized ANN-based approach for estimation of shear strength of soil. Asian J. Civ. Eng. (2023b). https://doi.org/10.1007/s42107-023-00739-6 Raja, M.N.A., Shukla, S.K.: Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique. Geotext. Geomembr. 49(5), 1280–1293 (2021). https://doi.org/10.1016/j.geotexmem.2021.04.007 Raja, M.N.A., Jaffar, S.T.A., Bardhan, A., Shukla, S.K.: Predicting and validating the load-settlement behavior of large-scale geosynthetic-reinforced soil abutments using hybrid intelligent modelling. J. Rock Mech. Geotech. Eng. 15(3), 773–788 (2023). https://doi.org/10.1016/j.jrmge.2022.04.012 Seireg, H.R., Omar, Y.M.K., El-Samie, F.E.A., El-Fishawy, A.S., Elmahalawy, A.: Ensemble machine learning techniques using computer simulation data for wild blueberry yield prediction. IEEE Access. 10, 64671–64687 (2022). https://doi.org/10.1109/ACCESS.2022.3181970 Sharafati, A., Haghbin, M., Motta, D., Yaseen, Z.M.: The application of soft computing models and empirical formulations for hydraulic structure scouring depth simulation: a comprehensive review, assessment and possible future research direction. Arch. Comput. Methods Eng. 28, 423–447 (2019). https://doi.org/10.1007/s11831-019-09382-4 Sharma, B., Bora, P.K.: Plastic limit, liquid limit and undrained shear strength of soil-reappraisal. J. Geotech. Geoenvironmental Eng. - ASCE. 129(8), 774–777 (2003). https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(774) Skentou, A.D., Bardhan, A., Mamou, A., Lemonis, M.E., Kumar, G., Samui, P., Armaghani, D.J., Asteris, P.G.: Closed-form equation for estimating unconfined compressive strength of granite from three non-destructive tests using soft computing models. Rock Mech. Rock Eng. 56, 487–514 (2023). https://doi.org/10.1007/s00603-022-03046-9 Song, X., Tang, L., Zhao, S., Zhang, X., Li, L., Huang, J., Cai, W.: Grey wolf optimizer for parameter estimation in surface waves. Soil Dyn. Earthq. Eng. 75, 147–157 (2015). https://doi.org/10.1016/j.soildyn.2015.04.004 Vanapalli, S.K., Fredlund, D.G.: Comparison of different procedures to predict unsaturated soil shear strength. Advance. Unsat. Geotech. 99, 195–209 (2000). https://doi.org/10.1061/40510(287)13 Wang, M., Chen, H.: Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl. Soft Comput. 88, 105946 (2019). https://doi.org/10.1016/j.asoc.2019.105946 Xue, X., Makota, C., Khalaf, O.I., Jayabalan, J., Samui, P., Abdulsahib, G.M.: Machine learning approach for prediction of lateral confinement coefficient of CFRP-wrapped RC columns. Sym. 15(2), 545 (2023). https://doi.org/10.3390/sym15020545 Zhang, C.B., Chen, L.H., Liu, Y.P., Ji, X.D., Liu, X.P.: Triaxial compression test of soil–root composites to evaluate influence of roots on soil shear strength. Ecol. Eng. 36, 19–26 (2010). https://doi.org/10.1016/j.ecoleng.2009.09.005 Zhai, Q., Rahardjo, H., Satyanaga, A., Dai, G.: Estimation of unsaturated shear strength from soil–water characteristic curve. Acta Geotech. 14(6), 1977–1990 (2019). https://doi.org/10.1007/s11440-019-00785-y Zhou, J., Chen, Y., Chen, H., Khandelwal, M., Monjezi, M., Peng, K.: Hybridizing five neural-metaheuristic paradigms to predict the pillar stress in bord and pillar method. Front. Public Health. 11, 1119580 (2023). https://doi.org/10.3389/fpubh.2023.1119580