Tối ưu hóa hệ thống bơm nước năng lượng mặt trời tại Kalagh Ashian bằng thuật toán đom đóm đa mục tiêu mới đề xuất

Farid Shayeteh1, Reihaneh Kardehi Moghaddam1
1Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Tóm tắt

Trong bài báo này, một phương pháp tối ưu hóa đa mục tiêu mới được đề xuất nhằm xác định công suất tối ưu của hệ thống bơm nước năng lượng mặt trời tại làng Kalagh Ashian ở Bojnurd. Để tính toán cấu trúc tối ưu của hệ thống lần đầu tiên, một thuật toán đom đóm đa mục tiêu mới, dựa trên định luật hấp dẫn và khoảng cách chật chội, được áp dụng. Trong phương pháp này, bằng cách tính toán góc nghiêng tối ưu và góc hướng mặt trời tối ưu, công suất đầu ra tối đa được đạt được. Kết quả là, thể tích nước trong hệ thống tăng lên, kích thước của hệ thống bơm được giảm thiểu, chi phí sản xuất được giảm và do đó, lợi nhuận từ việc bán nước tăng lên. Kết quả mô phỏng đã chứng minh rằng trong hệ thống đã được tối ưu hóa, so với hệ thống không được tối ưu hóa, số lượng tấm pin mặt trời giảm xuống 3, trong khi thể tích nước sản xuất và lợi nhuận từ việc bán nước tăng lên lần lượt là 8 m3 và 6.933.764 Rial. Hơn nữa, vốn đầu tư ban đầu và thời gian hoàn vốn giảm khoảng 19%.

Từ khóa

#tối ưu hóa #hệ thống bơm nước #năng lượng mặt trời #thuật toán đom đóm #đa mục tiêu #Kalagh Ashian

Tài liệu tham khảo

Abu-Aligah, M. (2011). Design of photovoltaic water pumping system and compare it with diesel powered pump. Jordan Journal of Mechanical & Industrial Engineering,5, 273–280. Alonso Abella, M., Lorenzo, E., & Chenlo, F. (2003). PV water pumping systems based on standard frequency converters. Progress in Photovoltaics: Research and Applications,11, 179–191. Bakelli, Y., Arab, A. H., & Azoui, B. (2011). Optimal sizing of photovoltaic pumping system with water tank storage using LPSP concept. Solar Energy,85, 288–294. Benghanem, M., Daffallah, K. O., Joraid, A. A., Alamri, S. N., & Jaber, A. (2013). Performance optimization of a photovoltaic water-pumping system. Energy Conversion and Management,65, 50–56. Campana, P. E., Li, H., Zhang, J., Zhang, R., Liu, J., & Yan, J. (2015). Economic optimization of photovoltaic water pumping systems for irrigation. Energy Conversion and Management,95, 32–41. Çelik, E., & Gör, H. (2019). Enhanced speed control of a DC servo system using PI + DF controller tuned by stochastic fractal search technique. Journal of the Franklin Institute,356, 1333–1359. Chandel, S. S., Naik, M. N., & Chandel, R. (2015). Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renewable and Sustainable Energy Reviews,49, 1084–1099. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,6, 182–197. Duffie, J. A., Beckman, W. A., & Worek, W. M. (2013). Solar engineering of thermal processes (4th ed.). New Jersey: Wiley. Duggirala, A., Jana, R. K., Shesu, R. V., & Bhattacharjee, P. (2018). Design optimization of deep groove ball bearings using crowding distance particle swarm optimization. Sādhanā,43, 9. Erfani, T., & Utyuzhnikov, S. V. (2011). Directed search domain: a method for even generation of the Pareto frontier in multiobjective optimization. Engineering Optimization,43, 467–484. Fister, I., Fister, I., Jr., Yang, X. S., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation,13, 34–46. Fortin, F. A., & Parizeau, M. (2013). Revisiting the NSGA-II crowding-distance computation. In Proceedings of the 15th annual conference on Genetic and evolutionary computation (pp. 623–630). Jia, L., Cheng, D., & Chiu, M. S. (2012). Pareto-optimal solutions based multi-objective particle swarm optimization control for batch processes. Neural Computing and Applications,21(6), 1107–1116. Junior, B. R. P., Cossi, A. M., & Mantovani, J. R. (2013). Multiobjective short-term planning of electric power distribution systems using NSGA-II. Journal of Control, Automation and Electrical Systems,24(3), 286–299. Kazem, H. A., Al-Waeli, A. H., Al-Kabi, A. H., & Al-Mamari, A. (2015). Technoeconomical assessment of optimum design for photovoltaic water pumping system for rural area in Oman. International Journal of Photoenergy, 2015, 1–9. Khlifi, M. A. (2016). Study and control of photovoltaic water pumping system. Journal of Electrical Engineering and Technology,11, 117–124. Madavan, N. K. (2002). Multiobjective optimization using a Pareto differential evolution approach. In Proceedings of the 2002 congress on evolutionary computation. CEC’02 (Cat. No. 02TH8600) (pp. 1145–1150). IEEE. Metaxiotis, K., & Liagkouras, K. (2012). Multiobjective evolutionary algorithms for portfolio management: A comprehensive literature review. Expert Systems with Applications,39, 11685–11698. Mohamed, A. F., Elarini, M. M., & Othman, A. M. (2014). A new technique based on artificial bee colony algorithm for optimal sizing of stand-alone photovoltaic system. Journal of Advanced Research,5, 397–408. Mokeddem, A., Midoun, A., Kadri, D., Hiadsi, S., & Raja, I. A. (2011). Performance of a directly-coupled PV water pumping system. Energy Conversion and Management,52, 3089–3095. Muhsen, D. H., Ghazali, A. B., & Khatib, T. (2016a). Multiobjective differential evolution algorithm-based sizing of a standalone photovoltaic water pumping system. Energy Conversion and Management,118, 32–43. Muhsen, D. H., Ghazali, A. B., Khatib, T., Abed, I. A., & Natsheh, E. M. (2016b). Sizing of a standalone photovoltaic water pumping system using a multi-objective evolutionary algorithm. Energy,109, 961–973. Mustafa, W., Humar, M. F., Zakaria, K. P., & Hamid, H. (2014). Solar water pumping optimization for domestic use in Kota Bharu, East Coast of Peninsular Malaysia. In 2014 4th International conference on engineering technology and technopreneuship (ICE2T) (pp. 116–120). IEEE. Olcan, C. (2015). Multi-objective analytical model for optimal sizing of stand-alone photovoltaic water pumping systems. Energy Conversion and Management,100, 358–369. Ouachani, I., Rabhi, A., Tidhaf, B., Zouggar, S., & Elhajjaji, A. (2013). Optimization and control for a photovoltaic pumping system. In 2013 International conference on renewable energy research and applications (ICRERA) (pp. 734–739). IEEE. Pham, D. T., & Ghanbarzadeh, A. (2007). Multi-objective optimisation using the bees algorithm. In 3rd International virtual conference on intelligent production machines and systems. Rekioua, D., & Matagne, E. (2012). Optimization of photovoltaic power systems: Modelization, simulation and control. Berlin: Springer. Rezaei, M. M., & Asadi, H. (2019). A modified perturb-and-observe-based maximum power point tracking technique for photovoltaic energy conversion systems. Journal of Control, Automation and Electrical Systems,30(5), 822–831. Robic, T., & Filipic, B. (2005). Differential evolution for multiobjective optimization. In International conference on evolutionary multi-criterion optimization (pp. 520–533). Springer, Berlin. Salah, C. B., Mimouni, M. F., & Ouali, M. (2015). A real-time control of photovoltaic water-pumping network. Computers and Electrical Engineering,46, 14–28. Shi, Z., & Chen, Q. W. (2011). Multi-objective quantum-behaved particle swarm optimization algorithm based on QPSO and crowding distance sorting. Control and Decision,26, 540–547. Stoppato, A., Cavazzini, G., Ardizzon, G., & Rossetti, A. (2014). A PSO (particle swarm optimization)-based model for the optimal management of a small PV (Photovoltaic)-pump hydro energy storage in a rural dry area. Energy,76, 168–174. Wang, Y. N., Wu, L. H., & Yuan, X. F. (2010). Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure. Soft Computing,14, 193. Yahyaoui, I., Chaabene, M., & Tadeo, F. (2015). Fuzzy energy management for photovoltaic water pumping system. International Journal of Computer Applications,110, 0975–8687. Yang, X. S. (2010). Firefly algorithm, stochastic test functions and design optimization. International Journal of Bio-Inspired Computation,2, 78–84. Yang, X. S. (2013). Multiobjective firefly algorithm for continuous optimization. Engineering with Computers,29(2), 175–184. Zhu, Q., Lin, Q., Chen, W., Wong, K. C., Coello, C. A. C., Li, J., et al. (2017). An external archive-guided multiobjective particle swarm optimization algorithm. IEEE Transactions on Cybernetics,47(9), 2794–2808.