Optimization of Binary Mixtures of Biodiesel and Fossil Diesel for Clean Energy Combustion
Tóm tắt
There is an urgent interest initiated to develop clean energy resources with the aim of reducing exposure to environmental pollutants and explore model fuels that can hasten the achievement of clean energy combustion. This work investigates various ratios of biodiesel and commercial diesel in order to propose model binary fuels for clean energy combustion. Accordingly, diesel blends of ratios 1:1, 3:2 and 2:3 were each pyrolyzed at a contact time of 5 s in a quartz reactor at 1 atmosphere pressure. A model temperature of 500 °C was explored in these experiments. The charcoal content for pure fossil diesel was compared with the binary diesel residue. Gas-phase molecular components were determined using Gas chromatography (GC) coupled to a mass selective detector (MSD). Elemental composition of thermal char was determined using Smart Elemental Analyzer. Radical intensities for the three types of char (biochar, bio-fossil char, and fossil char) were measured using an X-band electron paramagnetic resonance spectrometer. It was noted that at a ratio of 2:3 (Biodiesel: Fossil diesel), harmful molecular products reduced significantly, 76–99%. Elemental analysis data indicated that the carbon content from commercial diesel was very high (≈ 70.61%) as compared to approximately 53% for biodiesel-fossil diesel mixture in the same ratio 2:3. Interestingly, the free radical content was reduced by nearly 50% in favour of the biodiesel/fossil diesel mixture. These results are encouraging and suggest that a better optimized fuel mixture has been found for better clean energy combustion.
Tài liệu tham khảo
Saavedra MMR, Fontes CHDO, Freires FGM (2018) Renew Sustain Energy Rev 82:247–259
Damanik N, Ong HC, Tong CW, Mahlia TMI, Silitonga AS (2018) Environ Sci Pollut Res 1–19
Qasim M, Ansari TM, Hussain M (2018) Environ Sci Pollut Res 25:23657–23666
Mahmudul H, Hagos F, Mamat R, Adam AA, Ishak W, Alenezi R (2017) Renew Sustain Energy Rev 72:497–509
Ali OM, Mamat R, Abdullah NR, Abdullah AA (2016) Renew Energy 86:59–67
Tutak W, Lukacs K, Szwaja S, Bereczky A (2015) Fuel 154:196–206
Ruhul A, Kalam M, Masjuki H, Alabdulkarem A, Atabani A, Fattah IR, Abedin M (2016) RSC Adv 6:24584–24595
Ruhul A, Kalam M, Masjuki H, Shahir S, Alabdulkarem A, Teoh Y, How H, Reham S (2017) Energy 141:2362–2376
Ghazali WNMW, Mamat R, Masjuki H, Najafi G (2015) Renew Sustain Energy Rev 51:585–602
Khan K, Kumar G, Sharma AK, Kumar PS, Mandal C, Chintala V (2018) Biofuels 9:53–60
Guedes RE, Luna AS, Torres AR (2018) J Anal App Pyrol 129:134–149
Czajczyńska D, Anguilano L, Ghazal H, Krzyżyńska R, Reynolds AJ, Spencer N et al (2017) Therm Sci Eng Prog 3:171–197
Chendynski LT, Mantovani ACG, Savada FY, Messias GB, Santana VT, Salviato A et al (2019) Fuel 242:316–322
Chhetri A, Islam M (2008) Energy Sources Part A 30:754–764
Altarawneh M, Dlugogorski BZ (2015) Phys Chem Chem Phys 17(3):1822–1830
Sundus F, Fazal MA, Masjuki HH (2017) Renew Sustain Energy Rev 70:399–412
Yahagi SS, Roveda AC, Sobral AT, Oliveira IP, Caires ARL, Gomes RS et al (2019) Int J Anal Chem 2019:1–10
Mumtaz MW, Adnan A, Mahmood Z, Mukhtar H, Malik MF, Ashraf F (2012) Int J Green Energy 9:685–701
Mosonik BC, Kibet JK, Ngari SM, Nyamori VO (2018) Environ Sci Pollut Res Int 25:24807–24817
Mofijur M, Rasul MG, Hyde J, Azad AK, Mamat R, Bhuiya MMK (2016) Renew Sustain Energy Rev 53:265–278
Kibet JK, Mosonik BC, Nyamori VO, Ngari SM (2018) Chem Cent J 12:89
Musthafa MM, Kumar TA, Mohanraj T, Chandramouli R (2018) Fuel 225:343–348
Pusparizkita YM, Setiadi T, Harimawan A (2018) MATEC Web Conf 156:01008
Thach TQ, Tsang H, Cao P, Ho LM (2018) Int J Hyg Environ Health 221:17–27
Liu H, Yoo KH, Boehman AL, Zheng Z (2018) Energy Fuels 32:1884–1892
Zhang Y, Lou D, Tan P, Hu Z (2018) Energy 155:77–86
Tsai WT (2016) Environments 3:23
Suresh M, Jawahar C, Richard A (2018) Renew Sustain Energy Rev 92:38–49
Hasan M, Rahman M (2017) Renew Sustain Energ Rev 74:938–948
Chendynski LT, Mantovani ACG, Savada FY, Messias GB, Santana VT, Salviato A, Di Mauro E, Borsato D (2019) Fuel 242:316–322
San José J, Sanz-Tejedor MA, Arroyo Y (2018) Energy Fuels 32:11502–11510
Kigen G, Kipkore W, Wanjohi B, Haruki B, Kemboi J (2017) Pharmacogn Res 9:333–347
Nejad AS, Zahedi AR (2018) Renew Energy 119:365–374
Ma N, Zhang L, Zhang Y, Yang L, Yu C, Yin G, Doane TA, Wu Z, Zhu P, Ma X (2016) PLoS ONE 11:e0154091
Kibet J, Kurgat C, Limo S, Rono N, Bosire J (2016) Chem Cent J 10:60
Jebet A, Kibet J, Ombaka L, Kinyanjui T (2017) Chem Cent 11:79
Kim KH, Bai X, Cady S, Gable P, Brown RC (2015) Chemsuschem 8(5):894–900
Power PP (2003) Chem Rev 103:789–810
Petrakis L, Grandy DW (1981) Fuel 60:115–119
Asatryan R, Davtyan A, Khachatryan L, Dellinger B (2005) J Phys Chem A 109(49):11198–11205
Assaf NW, Altarawneh M, Oluwoye I, Radny M, Lomnicki SM, Dlugogorski BZ (2016) Environ Sci Technol 50(20):11094–11102
Mosallanejad S, Dlugogorski BZ, Kennedy EM, Stockenhuber M, Lomnicki SM, Assaf NW et al (2016) Environ Sci Technol 50(3):1412–1418
Laumbach RJ, Kipen HM (2012) J Allergy Clin Immunol 129(1):3–13
García-Olivares A, Solé J, Osychenko O (2018) Energy Convers Manag 158:266–285
García-Olivares A, Ballabrera-Poy JE (2015) Technol Forecast Soc Change 90:587–598